Cargando…
Statistical and Machine Learning Approaches to Predict Gene Regulatory Networks From Transcriptome Datasets
Statistical and machine learning (ML)-based methods have recently advanced in construction of gene regulatory network (GRNs) based on high-throughput biological datasets. GRNs underlie almost all cellular phenomena; hence, comprehensive GRN maps are essential tools to elucidate gene function, thereb...
Autores principales: | Mochida, Keiichi, Koda, Satoru, Inoue, Komaki, Nishii, Ryuei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281826/ https://www.ncbi.nlm.nih.gov/pubmed/30555503 http://dx.doi.org/10.3389/fpls.2018.01770 |
Ejemplares similares
-
Diurnal Transcriptome and Gene Network Represented through Sparse Modeling in Brachypodium distachyon
por: Koda, Satoru, et al.
Publicado: (2017) -
Computer vision-based phenotyping for improvement of plant productivity: a machine learning perspective
por: Mochida, Keiichi, et al.
Publicado: (2018) -
Parental legacy and regulatory novelty in Brachypodium diurnal transcriptomes accompanying their polyploidy
por: Inoue, Komaki, et al.
Publicado: (2020) -
Gene Co-expression Network Analysis Suggests the Existence of Transcriptional Modules Containing a High Proportion of Transcriptionally Differentiated Homoeologs in Hexaploid Wheat
por: Takahagi, Kotaro, et al.
Publicado: (2018) -
Decoding Plant–Environment Interactions That Influence Crop Agronomic Traits
por: Mochida, Keiichi, et al.
Publicado: (2020)