Cargando…

Failure modes analysis of electrofluidic display under thermal ageing

Dielectric failure as well as optical switching failure in electrofluidic display (EFD) are still a bottleneck for sufficient device lifetime. In this study, a dielectric redundancy-designed multilayer insulator of ParyleneC/AF1600X was applied in an EFD device. The reliability performance was syste...

Descripción completa

Detalles Bibliográficos
Autores principales: Dong, Baoqin, Tang, Biao, Groenewold, Jan, Li, Hui, Zhou, Rui, Henzen, Alexander Victor, Zhou, Guofu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281906/
https://www.ncbi.nlm.nih.gov/pubmed/30564404
http://dx.doi.org/10.1098/rsos.181121
Descripción
Sumario:Dielectric failure as well as optical switching failure in electrofluidic display (EFD) are still a bottleneck for sufficient device lifetime. In this study, a dielectric redundancy-designed multilayer insulator of ParyleneC/AF1600X was applied in an EFD device. The reliability performance was systematically studied by tracking the applied voltage-dependent leakage current and capacitance changes (I–V and C–V curves) with thermal ageing time. The multilayer insulator shows a more stable performance in leakage current compared to a single-layer insulator. The failure modes during operation underlying the single-layer and the multilayer dielectric appear to be different as exemplified by microscopic images. The single-layer AFX shows significant detachment. In addition, by quantitatively analysing the C–V curves with ageing time, we find that for the single AFX device, the dominant failure mode is ‘no-opening’ of the pixels. For the multilayer device, the dominant failure mode is ‘no-closing’ of the pixels. This study provides tools for distinguishing the basic failure modes of an EFD device and demonstrates a quantitative method for evaluating the reliability performance of the device under thermal ageing.