Cargando…

Acetophenone Mannich bases: study of ionic liquid catalysed synthesis and antioxidative potential of products

Three-component Mannich reaction of acetophenone or 4-iodoacetophenone with a variety of substituted anilines and benzaldehyde, catalysed with diethanolammonium chloroacetate, was performed under mild conditions. Mannich bases (MBs), of which five are new, were obtained in good to excellent yields....

Descripción completa

Detalles Bibliográficos
Autores principales: Petrović, Vladimir P., Simijonović, Dušica, Milovanović, Vesna M., Petrović, Zorica D.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281942/
https://www.ncbi.nlm.nih.gov/pubmed/30564412
http://dx.doi.org/10.1098/rsos.181232
Descripción
Sumario:Three-component Mannich reaction of acetophenone or 4-iodoacetophenone with a variety of substituted anilines and benzaldehyde, catalysed with diethanolammonium chloroacetate, was performed under mild conditions. Mannich bases (MBs), of which five are new, were obtained in good to excellent yields. All compounds were characterized using elemental analysis, NMR and IR. In addition, detailed experimental and simulated UV–Vis spectral characterization of these compounds is presented here for the first time. In vitro antioxidative potential of synthetized MBs was evaluated using 2,2-diphenyl-1-picryl-hydrazyl radical and density functional theory (DFT) thermodynamical study. It was shown that compounds with anisidine moiety express moderate antioxidative activity. Mechanism of the organocatalysed Mannich reaction was thoroughly inspected by means of DFT. The reaction undergoes the hydrogen bonding-assisted mechanism. Moreover, the proposed rate determining step of the overall reaction is water elimination in the process of iminium ion formation. To the extent of our knowledge, this is the first detailed report on the influence of this type of catalyst on the formation of iminium ion, as a crucial intermediate for the whole reaction.