Cargando…
Early Detection of Hemodynamic Responses Using EEG: A Hybrid EEG-fNIRS Study
Enhanced classification accuracy and a sufficient number of commands are highly demanding in brain computer interfaces (BCIs). For a successful BCI, early detection of brain commands in time is essential. In this paper, we propose a novel classifier using a modified vector phase diagram and the powe...
Autores principales: | Khan, M. Jawad, Ghafoor, Usman, Hong, Keum-Shik |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281984/ https://www.ncbi.nlm.nih.gov/pubmed/30555313 http://dx.doi.org/10.3389/fnhum.2018.00479 |
Ejemplares similares
-
EEG-fNIRS-based hybrid image construction and classification using CNN-LSTM
por: Mughal, Nabeeha Ehsan, et al.
Publicado: (2022) -
Feature Extraction and Classification Methods for Hybrid fNIRS-EEG Brain-Computer Interfaces
por: Hong, Keum-Shik, et al.
Publicado: (2018) -
Hybrid EEG–fNIRS-Based Eight-Command Decoding for BCI: Application to Quadcopter Control
por: Khan, Muhammad Jawad, et al.
Publicado: (2017) -
Systemic Review on Transcranial Electrical Stimulation Parameters and EEG/fNIRS Features for Brain Diseases
por: Yang, Dalin, et al.
Publicado: (2021) -
Measuring Mental Workload with EEG+fNIRS
por: Aghajani, Haleh, et al.
Publicado: (2017)