Cargando…

Salmonella enterica Phylogeny Based on Whole-Genome Sequencing Reveals Two New Clades and Novel Patterns of Horizontally Acquired Genetic Elements

Using whole-genome sequence (WGS) data from the GenomeTrakr network, a globally distributed network of laboratories sequencing foodborne pathogens, we present a new phylogeny of Salmonella enterica comprising 445 isolates from 266 distinct serovars and originating from 52 countries. This phylogeny i...

Descripción completa

Detalles Bibliográficos
Autores principales: Worley, Jay, Meng, Jianghong, Allard, Marc W., Brown, Eric W., Timme, Ruth E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6282209/
https://www.ncbi.nlm.nih.gov/pubmed/30482836
http://dx.doi.org/10.1128/mBio.02303-18
_version_ 1783378946186805248
author Worley, Jay
Meng, Jianghong
Allard, Marc W.
Brown, Eric W.
Timme, Ruth E.
author_facet Worley, Jay
Meng, Jianghong
Allard, Marc W.
Brown, Eric W.
Timme, Ruth E.
author_sort Worley, Jay
collection PubMed
description Using whole-genome sequence (WGS) data from the GenomeTrakr network, a globally distributed network of laboratories sequencing foodborne pathogens, we present a new phylogeny of Salmonella enterica comprising 445 isolates from 266 distinct serovars and originating from 52 countries. This phylogeny includes two previously unidentified S. enterica subsp. enterica clades. Serovar Typhi is shown to be nested within clade A. Our findings are supported by both phylogenetic support, based on a core genome alignment, and Bayesian approaches, based on single-nucleotide polymorphisms. Serovar assignments were refined by in silico analysis using SeqSero. More than 10% of serovars were either polyphyletic or paraphyletic. We found variable genetic content in these isolates relating to gene mobilization and virulence factors which have different distributions within clades. Gifsy-1- and Gifsy-2-like phages appear more prevalent in clade A; other viruses are more evenly distributed. Our analyses reveal IncFII is the predominant plasmid replicon in S. enterica. Few core or clade-defining virulence genes are observed, and their distributions appear probabilistic in nature. Together, these patterns demonstrate that genetic exchange within S. enterica is more extensive and frequent than previously realized, which significantly alters how we view the genetic structure of the bacterial species.
format Online
Article
Text
id pubmed-6282209
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-62822092018-12-10 Salmonella enterica Phylogeny Based on Whole-Genome Sequencing Reveals Two New Clades and Novel Patterns of Horizontally Acquired Genetic Elements Worley, Jay Meng, Jianghong Allard, Marc W. Brown, Eric W. Timme, Ruth E. mBio Research Article Using whole-genome sequence (WGS) data from the GenomeTrakr network, a globally distributed network of laboratories sequencing foodborne pathogens, we present a new phylogeny of Salmonella enterica comprising 445 isolates from 266 distinct serovars and originating from 52 countries. This phylogeny includes two previously unidentified S. enterica subsp. enterica clades. Serovar Typhi is shown to be nested within clade A. Our findings are supported by both phylogenetic support, based on a core genome alignment, and Bayesian approaches, based on single-nucleotide polymorphisms. Serovar assignments were refined by in silico analysis using SeqSero. More than 10% of serovars were either polyphyletic or paraphyletic. We found variable genetic content in these isolates relating to gene mobilization and virulence factors which have different distributions within clades. Gifsy-1- and Gifsy-2-like phages appear more prevalent in clade A; other viruses are more evenly distributed. Our analyses reveal IncFII is the predominant plasmid replicon in S. enterica. Few core or clade-defining virulence genes are observed, and their distributions appear probabilistic in nature. Together, these patterns demonstrate that genetic exchange within S. enterica is more extensive and frequent than previously realized, which significantly alters how we view the genetic structure of the bacterial species. American Society for Microbiology 2018-11-27 /pmc/articles/PMC6282209/ /pubmed/30482836 http://dx.doi.org/10.1128/mBio.02303-18 Text en https://doi.org/10.1128/AuthorWarrantyLicense.v1 This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
spellingShingle Research Article
Worley, Jay
Meng, Jianghong
Allard, Marc W.
Brown, Eric W.
Timme, Ruth E.
Salmonella enterica Phylogeny Based on Whole-Genome Sequencing Reveals Two New Clades and Novel Patterns of Horizontally Acquired Genetic Elements
title Salmonella enterica Phylogeny Based on Whole-Genome Sequencing Reveals Two New Clades and Novel Patterns of Horizontally Acquired Genetic Elements
title_full Salmonella enterica Phylogeny Based on Whole-Genome Sequencing Reveals Two New Clades and Novel Patterns of Horizontally Acquired Genetic Elements
title_fullStr Salmonella enterica Phylogeny Based on Whole-Genome Sequencing Reveals Two New Clades and Novel Patterns of Horizontally Acquired Genetic Elements
title_full_unstemmed Salmonella enterica Phylogeny Based on Whole-Genome Sequencing Reveals Two New Clades and Novel Patterns of Horizontally Acquired Genetic Elements
title_short Salmonella enterica Phylogeny Based on Whole-Genome Sequencing Reveals Two New Clades and Novel Patterns of Horizontally Acquired Genetic Elements
title_sort salmonella enterica phylogeny based on whole-genome sequencing reveals two new clades and novel patterns of horizontally acquired genetic elements
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6282209/
https://www.ncbi.nlm.nih.gov/pubmed/30482836
http://dx.doi.org/10.1128/mBio.02303-18
work_keys_str_mv AT worleyjay salmonellaentericaphylogenybasedonwholegenomesequencingrevealstwonewcladesandnovelpatternsofhorizontallyacquiredgeneticelements
AT mengjianghong salmonellaentericaphylogenybasedonwholegenomesequencingrevealstwonewcladesandnovelpatternsofhorizontallyacquiredgeneticelements
AT allardmarcw salmonellaentericaphylogenybasedonwholegenomesequencingrevealstwonewcladesandnovelpatternsofhorizontallyacquiredgeneticelements
AT brownericw salmonellaentericaphylogenybasedonwholegenomesequencingrevealstwonewcladesandnovelpatternsofhorizontallyacquiredgeneticelements
AT timmeruthe salmonellaentericaphylogenybasedonwholegenomesequencingrevealstwonewcladesandnovelpatternsofhorizontallyacquiredgeneticelements