Cargando…
Oxygen responses within the nucleus accumbens are associated with individual differences in effort exertion in rats
Goal‐directed motivated behaviour is crucial for everyday life. Such behaviour is often measured, in rodents, under a progressive ratio (PR) schedule of reinforcement. Previous studies have identified a few brain structures critical for supporting PR performance. However, the association between neu...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6282581/ https://www.ncbi.nlm.nih.gov/pubmed/30218588 http://dx.doi.org/10.1111/ejn.14150 |
_version_ | 1783379025204346880 |
---|---|
author | Hailwood, Jonathan M. Gilmour, Gary Robbins, Trevor W. Saksida, Lisa M. Bussey, Timothy J. Marston, Hugh M. Gastambide, Francois |
author_facet | Hailwood, Jonathan M. Gilmour, Gary Robbins, Trevor W. Saksida, Lisa M. Bussey, Timothy J. Marston, Hugh M. Gastambide, Francois |
author_sort | Hailwood, Jonathan M. |
collection | PubMed |
description | Goal‐directed motivated behaviour is crucial for everyday life. Such behaviour is often measured, in rodents, under a progressive ratio (PR) schedule of reinforcement. Previous studies have identified a few brain structures critical for supporting PR performance. However, the association between neural activity within these regions and individual differences in effort‐related behaviour is not known. Presently, we used constant potential in vivo oxygen amperometry, a surrogate for functional resonance imaging in rodents, to assess changes in tissue oxygen levels within the nucleus accumbens (NAc) and orbitofrontal cortex (OFC) in male Wistar rats performing a PR task. Within both regions, oxygen responses to rewards increased as the effort exerted to obtain the rewards was larger. Furthermore, higher individual breakpoints were associated with greater magnitude NAc oxygen responses. This association could not be explained by temporal confounds and remained significant when controlling for the different number of completed trials. Animals with higher breakpoints also showed greater magnitude NAc oxygen responses to rewards delivered independently of any behaviour. In contrast, OFC oxygen responses were not associated with individual differences in behavioural performance. The present results suggest that greater NAc oxygen responses following rewards, through a process of incentive motivation, may allow organisms to remain on task for longer and to overcome greater effort costs. |
format | Online Article Text |
id | pubmed-6282581 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-62825812018-12-11 Oxygen responses within the nucleus accumbens are associated with individual differences in effort exertion in rats Hailwood, Jonathan M. Gilmour, Gary Robbins, Trevor W. Saksida, Lisa M. Bussey, Timothy J. Marston, Hugh M. Gastambide, Francois Eur J Neurosci Behavioural Neuroscience Goal‐directed motivated behaviour is crucial for everyday life. Such behaviour is often measured, in rodents, under a progressive ratio (PR) schedule of reinforcement. Previous studies have identified a few brain structures critical for supporting PR performance. However, the association between neural activity within these regions and individual differences in effort‐related behaviour is not known. Presently, we used constant potential in vivo oxygen amperometry, a surrogate for functional resonance imaging in rodents, to assess changes in tissue oxygen levels within the nucleus accumbens (NAc) and orbitofrontal cortex (OFC) in male Wistar rats performing a PR task. Within both regions, oxygen responses to rewards increased as the effort exerted to obtain the rewards was larger. Furthermore, higher individual breakpoints were associated with greater magnitude NAc oxygen responses. This association could not be explained by temporal confounds and remained significant when controlling for the different number of completed trials. Animals with higher breakpoints also showed greater magnitude NAc oxygen responses to rewards delivered independently of any behaviour. In contrast, OFC oxygen responses were not associated with individual differences in behavioural performance. The present results suggest that greater NAc oxygen responses following rewards, through a process of incentive motivation, may allow organisms to remain on task for longer and to overcome greater effort costs. John Wiley and Sons Inc. 2018-09-28 2018-11 /pmc/articles/PMC6282581/ /pubmed/30218588 http://dx.doi.org/10.1111/ejn.14150 Text en © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Behavioural Neuroscience Hailwood, Jonathan M. Gilmour, Gary Robbins, Trevor W. Saksida, Lisa M. Bussey, Timothy J. Marston, Hugh M. Gastambide, Francois Oxygen responses within the nucleus accumbens are associated with individual differences in effort exertion in rats |
title | Oxygen responses within the nucleus accumbens are associated with individual differences in effort exertion in rats |
title_full | Oxygen responses within the nucleus accumbens are associated with individual differences in effort exertion in rats |
title_fullStr | Oxygen responses within the nucleus accumbens are associated with individual differences in effort exertion in rats |
title_full_unstemmed | Oxygen responses within the nucleus accumbens are associated with individual differences in effort exertion in rats |
title_short | Oxygen responses within the nucleus accumbens are associated with individual differences in effort exertion in rats |
title_sort | oxygen responses within the nucleus accumbens are associated with individual differences in effort exertion in rats |
topic | Behavioural Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6282581/ https://www.ncbi.nlm.nih.gov/pubmed/30218588 http://dx.doi.org/10.1111/ejn.14150 |
work_keys_str_mv | AT hailwoodjonathanm oxygenresponseswithinthenucleusaccumbensareassociatedwithindividualdifferencesineffortexertioninrats AT gilmourgary oxygenresponseswithinthenucleusaccumbensareassociatedwithindividualdifferencesineffortexertioninrats AT robbinstrevorw oxygenresponseswithinthenucleusaccumbensareassociatedwithindividualdifferencesineffortexertioninrats AT saksidalisam oxygenresponseswithinthenucleusaccumbensareassociatedwithindividualdifferencesineffortexertioninrats AT busseytimothyj oxygenresponseswithinthenucleusaccumbensareassociatedwithindividualdifferencesineffortexertioninrats AT marstonhughm oxygenresponseswithinthenucleusaccumbensareassociatedwithindividualdifferencesineffortexertioninrats AT gastambidefrancois oxygenresponseswithinthenucleusaccumbensareassociatedwithindividualdifferencesineffortexertioninrats |