Cargando…
Transaminase‐Catalyzed Racemization with Potential for Dynamic Kinetic Resolutions
Dynamic kinetic resolution (DKR) reactions in which a stereoselective enzyme and a racemization step are coupled in one pot would represent powerful tools for the production of enantiopure amines through enantioconvergence of racemates. The exploitation of DKR strategies is currently hampered by the...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6282829/ https://www.ncbi.nlm.nih.gov/pubmed/30546495 http://dx.doi.org/10.1002/cctc.201801049 |
Sumario: | Dynamic kinetic resolution (DKR) reactions in which a stereoselective enzyme and a racemization step are coupled in one pot would represent powerful tools for the production of enantiopure amines through enantioconvergence of racemates. The exploitation of DKR strategies is currently hampered by the lack of effective, enzyme‐compatible and scalable racemization strategies for amines. In the present work, the proof of concept of a fully biocatalytic method for amine racemization is presented. Both enantiomers of the model compound 1‐methyl‐3‐phenylpropylamine could be racemized in water and at room temperature using a couple of wild‐type, non‐proprietary, enantiocomplementary amine transaminases and a minimum amount of pyruvate/alanine as a co‐substrate couple. The biocatalytic simultaneous parallel cascade reaction presented here poses itself as a customizable amine racemization system with potential for the chemical industry in competition with traditional transition‐metal catalysis. |
---|