Cargando…
Compatibility between object size and response side in grasping: the left hand prefers smaller objects, the right hand prefers larger objects
It has been proposed that the brain processes quantities such as space, size, number, and other magnitudes using a common neural metric, and that this common representation system reflects a direct link to motor control, because the integration of spatial, temporal, and other quantity-related inform...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6282946/ https://www.ncbi.nlm.nih.gov/pubmed/30533312 http://dx.doi.org/10.7717/peerj.6026 |
Sumario: | It has been proposed that the brain processes quantities such as space, size, number, and other magnitudes using a common neural metric, and that this common representation system reflects a direct link to motor control, because the integration of spatial, temporal, and other quantity-related information is fundamental for sensorimotor transformation processes. In the present study, we examined compatibility effects between physical stimulus size and spatial (response) location during a sensorimotor task. Participants reached and grasped for a small or large object with either their non-dominant left or their dominant right hand. Our results revealed that participants initiated left hand movements faster when grasping the small cube compared to the large cube, whereas they initiated right hand movements faster when grasping the large cube compared to the small cube. Moreover, the compatibility effect influenced the timing of grip aperture kinematics. These findings indicate that the interaction between object size and response hand affects the planning of grasping movements and supports the notion of a strong link between the cognitive representation of (object) size, spatial (response) parameters, and sensorimotor control. |
---|