Cargando…
Transfer learning improves resting-state functional connectivity pattern analysis using convolutional neural networks
BACKGROUND: Deep learning is gaining importance in the prediction of cognitive states and brain pathology based on neuroimaging data. Including multiple hidden layers in artificial neural networks enables unprecedented predictive power; however, the proper training of deep neural networks requires t...
Autores principales: | Vakli, Pál, Deák-Meszlényi, Regina J, Hermann, Petra, Vidnyánszky, Zoltán |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283213/ https://www.ncbi.nlm.nih.gov/pubmed/30395218 http://dx.doi.org/10.1093/gigascience/giy130 |
Ejemplares similares
-
Predicting Body Mass Index From Structural MRI Brain Images Using a Deep Convolutional Neural Network
por: Vakli, Pál, et al.
Publicado: (2020) -
Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture
por: Meszlényi, Regina J., et al.
Publicado: (2017) -
Resting State fMRI Functional Connectivity Analysis Using Dynamic Time Warping
por: Meszlényi, Regina J., et al.
Publicado: (2017) -
Effect of head motion-induced artefacts on the reliability of deep learning-based whole-brain segmentation
por: Kemenczky, Péter, et al.
Publicado: (2022) -
The influence of anticipated monetary incentives on visual working memory performance in healthy younger and older adults
por: Manga, Annamária, et al.
Publicado: (2020)