Cargando…
The multiple maternal legacy of the Late Iron Age group of Urville-Nacqueville (France, Normandy) documents a long-standing genetic contact zone in northwestern France
The compilation of archaeological and genetic data for ancient European human groups has provided persuasive evidence for a complex series of migrations, population replacements and admixture until the Bronze Age. If the Bronze-to-Iron Age transition has been well documented archaeologically, ancien...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283558/ https://www.ncbi.nlm.nih.gov/pubmed/30521562 http://dx.doi.org/10.1371/journal.pone.0207459 |
_version_ | 1783379182245380096 |
---|---|
author | Fischer, Claire-Elise Lefort, Anthony Pemonge, Marie-Hélène Couture-Veschambre, Christine Rottier, Stéphane Deguilloux, Marie-France |
author_facet | Fischer, Claire-Elise Lefort, Anthony Pemonge, Marie-Hélène Couture-Veschambre, Christine Rottier, Stéphane Deguilloux, Marie-France |
author_sort | Fischer, Claire-Elise |
collection | PubMed |
description | The compilation of archaeological and genetic data for ancient European human groups has provided persuasive evidence for a complex series of migrations, population replacements and admixture until the Bronze Age. If the Bronze-to-Iron Age transition has been well documented archaeologically, ancient DNA (aDNA) remains rare for the latter period and does not precisely reflect the genetic diversity of European Celtic groups. In order to document the evolution of European communities, we analysed 45 individuals from the Late Iron Age (La Tène) Urville-Nacqueville necropolis in northwestern France, a region recognized as a major cultural contact zone between groups from both sides of the Channel. The characterization of 37 HVS-I mitochondrial sequences and 40 haplogroups provided the largest maternal gene pool yet recovered for the European Iron Age. First, descriptive analyses allowed us to demonstrate the presence of substantial amounts of steppe-related mitochondrial ancestry in the community, which is consistent with the expansion of Bell Beaker groups bearing an important steppe legacy in northwestern Europe at approximately 2500 BC. Second, maternal genetic affinities highlighted with Bronze Age groups from Great Britain and the Iberian Peninsula regions tends to support the idea that the continuous cultural exchanges documented archaeologically across the Channel and along the Atlantic coast (during and after the Bronze Age period) were accompanied by significant gene flow. Lastly, our results suggest a maternal genetic continuity between Bronze Age and Iron Age groups that would argue in favour of a cultural transition linked to progressive local economic changes rather than to a massive influx of allochthone groups. The palaeogenetic data gathered for the Urville-Nacqueville group constitute an important step in the biological characterization of European Iron age groups. Clearly, more numerous and diachronic aDNA data are needed to fully understand the complex relationship between the cultural and biological evolution of groups from the period. |
format | Online Article Text |
id | pubmed-6283558 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62835582018-12-20 The multiple maternal legacy of the Late Iron Age group of Urville-Nacqueville (France, Normandy) documents a long-standing genetic contact zone in northwestern France Fischer, Claire-Elise Lefort, Anthony Pemonge, Marie-Hélène Couture-Veschambre, Christine Rottier, Stéphane Deguilloux, Marie-France PLoS One Research Article The compilation of archaeological and genetic data for ancient European human groups has provided persuasive evidence for a complex series of migrations, population replacements and admixture until the Bronze Age. If the Bronze-to-Iron Age transition has been well documented archaeologically, ancient DNA (aDNA) remains rare for the latter period and does not precisely reflect the genetic diversity of European Celtic groups. In order to document the evolution of European communities, we analysed 45 individuals from the Late Iron Age (La Tène) Urville-Nacqueville necropolis in northwestern France, a region recognized as a major cultural contact zone between groups from both sides of the Channel. The characterization of 37 HVS-I mitochondrial sequences and 40 haplogroups provided the largest maternal gene pool yet recovered for the European Iron Age. First, descriptive analyses allowed us to demonstrate the presence of substantial amounts of steppe-related mitochondrial ancestry in the community, which is consistent with the expansion of Bell Beaker groups bearing an important steppe legacy in northwestern Europe at approximately 2500 BC. Second, maternal genetic affinities highlighted with Bronze Age groups from Great Britain and the Iberian Peninsula regions tends to support the idea that the continuous cultural exchanges documented archaeologically across the Channel and along the Atlantic coast (during and after the Bronze Age period) were accompanied by significant gene flow. Lastly, our results suggest a maternal genetic continuity between Bronze Age and Iron Age groups that would argue in favour of a cultural transition linked to progressive local economic changes rather than to a massive influx of allochthone groups. The palaeogenetic data gathered for the Urville-Nacqueville group constitute an important step in the biological characterization of European Iron age groups. Clearly, more numerous and diachronic aDNA data are needed to fully understand the complex relationship between the cultural and biological evolution of groups from the period. Public Library of Science 2018-12-06 /pmc/articles/PMC6283558/ /pubmed/30521562 http://dx.doi.org/10.1371/journal.pone.0207459 Text en © 2018 Fischer et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Fischer, Claire-Elise Lefort, Anthony Pemonge, Marie-Hélène Couture-Veschambre, Christine Rottier, Stéphane Deguilloux, Marie-France The multiple maternal legacy of the Late Iron Age group of Urville-Nacqueville (France, Normandy) documents a long-standing genetic contact zone in northwestern France |
title | The multiple maternal legacy of the Late Iron Age group of Urville-Nacqueville (France, Normandy) documents a long-standing genetic contact zone in northwestern France |
title_full | The multiple maternal legacy of the Late Iron Age group of Urville-Nacqueville (France, Normandy) documents a long-standing genetic contact zone in northwestern France |
title_fullStr | The multiple maternal legacy of the Late Iron Age group of Urville-Nacqueville (France, Normandy) documents a long-standing genetic contact zone in northwestern France |
title_full_unstemmed | The multiple maternal legacy of the Late Iron Age group of Urville-Nacqueville (France, Normandy) documents a long-standing genetic contact zone in northwestern France |
title_short | The multiple maternal legacy of the Late Iron Age group of Urville-Nacqueville (France, Normandy) documents a long-standing genetic contact zone in northwestern France |
title_sort | multiple maternal legacy of the late iron age group of urville-nacqueville (france, normandy) documents a long-standing genetic contact zone in northwestern france |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283558/ https://www.ncbi.nlm.nih.gov/pubmed/30521562 http://dx.doi.org/10.1371/journal.pone.0207459 |
work_keys_str_mv | AT fischerclaireelise themultiplematernallegacyofthelateironagegroupofurvillenacquevillefrancenormandydocumentsalongstandinggeneticcontactzoneinnorthwesternfrance AT lefortanthony themultiplematernallegacyofthelateironagegroupofurvillenacquevillefrancenormandydocumentsalongstandinggeneticcontactzoneinnorthwesternfrance AT pemongemariehelene themultiplematernallegacyofthelateironagegroupofurvillenacquevillefrancenormandydocumentsalongstandinggeneticcontactzoneinnorthwesternfrance AT coutureveschambrechristine themultiplematernallegacyofthelateironagegroupofurvillenacquevillefrancenormandydocumentsalongstandinggeneticcontactzoneinnorthwesternfrance AT rottierstephane themultiplematernallegacyofthelateironagegroupofurvillenacquevillefrancenormandydocumentsalongstandinggeneticcontactzoneinnorthwesternfrance AT deguillouxmariefrance themultiplematernallegacyofthelateironagegroupofurvillenacquevillefrancenormandydocumentsalongstandinggeneticcontactzoneinnorthwesternfrance AT fischerclaireelise multiplematernallegacyofthelateironagegroupofurvillenacquevillefrancenormandydocumentsalongstandinggeneticcontactzoneinnorthwesternfrance AT lefortanthony multiplematernallegacyofthelateironagegroupofurvillenacquevillefrancenormandydocumentsalongstandinggeneticcontactzoneinnorthwesternfrance AT pemongemariehelene multiplematernallegacyofthelateironagegroupofurvillenacquevillefrancenormandydocumentsalongstandinggeneticcontactzoneinnorthwesternfrance AT coutureveschambrechristine multiplematernallegacyofthelateironagegroupofurvillenacquevillefrancenormandydocumentsalongstandinggeneticcontactzoneinnorthwesternfrance AT rottierstephane multiplematernallegacyofthelateironagegroupofurvillenacquevillefrancenormandydocumentsalongstandinggeneticcontactzoneinnorthwesternfrance AT deguillouxmariefrance multiplematernallegacyofthelateironagegroupofurvillenacquevillefrancenormandydocumentsalongstandinggeneticcontactzoneinnorthwesternfrance |