Cargando…
Transgenerational effects in asexually reproduced offspring of Populus
The response of trees to a changing climate can be affected by transgenerational phenotypic plasticity, i.e. phenotypic variation that is conserved and transferred to the offspring. Transgenerational plasticity that is influenced by epigenetics (heritable changes in gene function that do not result...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283561/ https://www.ncbi.nlm.nih.gov/pubmed/30521624 http://dx.doi.org/10.1371/journal.pone.0208591 |
_version_ | 1783379182923808768 |
---|---|
author | Dewan, Sumitra De Frenne, Pieter Vanden Broeck, An Steenackers, Marijke Vander Mijnsbrugge, Kristine Verheyen, Kris |
author_facet | Dewan, Sumitra De Frenne, Pieter Vanden Broeck, An Steenackers, Marijke Vander Mijnsbrugge, Kristine Verheyen, Kris |
author_sort | Dewan, Sumitra |
collection | PubMed |
description | The response of trees to a changing climate can be affected by transgenerational phenotypic plasticity, i.e. phenotypic variation that is conserved and transferred to the offspring. Transgenerational plasticity that is influenced by epigenetics (heritable changes in gene function that do not result from changes in DNA sequence) during both sexual and asexual reproduction are of major relevance for adaptation of plants to climate change. To understand the transgenerational effects on the responses of vegetatively propagated poplar (Populus deltoides and P. trichocarpa) ramets (cuttings) to a changing environment, we tested whether the temperature and photoperiod experienced by the mother trees (genets) persistently affects the phenology of the cuttings grown in a common environment. We weekly monitored the bud phenology of the cuttings collected from the parent trees that have been growing across Europe along a >2100 km latitudinal gradient for at least 18 years. In addition, we asked whether there was variation in DNA methylation as measured by Methylation Sensitive Amplified Fragment Length Polymorphism (MSAPs) in the clones due to the different environmental conditions experienced by the parent trees. Our results indicate a transgenerational effect on bud phenology in the asexually reproduced offspring (vegetative cuttings). The temperatures experienced by the parent tree clones (from different geographic regions) altered the bud flush of the cuttings in the common garden. However, no significant epigenetic variation was detected in the cuttings of the parent trees within single genotypes growing under different climates. In sum, our results show that trees have the potential to respond to rapid climate change but the mechanism behind these changes needs to be further investigated by more powerful molecular methods like whole-genome bisulphite sequencing techniques. |
format | Online Article Text |
id | pubmed-6283561 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62835612018-12-20 Transgenerational effects in asexually reproduced offspring of Populus Dewan, Sumitra De Frenne, Pieter Vanden Broeck, An Steenackers, Marijke Vander Mijnsbrugge, Kristine Verheyen, Kris PLoS One Research Article The response of trees to a changing climate can be affected by transgenerational phenotypic plasticity, i.e. phenotypic variation that is conserved and transferred to the offspring. Transgenerational plasticity that is influenced by epigenetics (heritable changes in gene function that do not result from changes in DNA sequence) during both sexual and asexual reproduction are of major relevance for adaptation of plants to climate change. To understand the transgenerational effects on the responses of vegetatively propagated poplar (Populus deltoides and P. trichocarpa) ramets (cuttings) to a changing environment, we tested whether the temperature and photoperiod experienced by the mother trees (genets) persistently affects the phenology of the cuttings grown in a common environment. We weekly monitored the bud phenology of the cuttings collected from the parent trees that have been growing across Europe along a >2100 km latitudinal gradient for at least 18 years. In addition, we asked whether there was variation in DNA methylation as measured by Methylation Sensitive Amplified Fragment Length Polymorphism (MSAPs) in the clones due to the different environmental conditions experienced by the parent trees. Our results indicate a transgenerational effect on bud phenology in the asexually reproduced offspring (vegetative cuttings). The temperatures experienced by the parent tree clones (from different geographic regions) altered the bud flush of the cuttings in the common garden. However, no significant epigenetic variation was detected in the cuttings of the parent trees within single genotypes growing under different climates. In sum, our results show that trees have the potential to respond to rapid climate change but the mechanism behind these changes needs to be further investigated by more powerful molecular methods like whole-genome bisulphite sequencing techniques. Public Library of Science 2018-12-06 /pmc/articles/PMC6283561/ /pubmed/30521624 http://dx.doi.org/10.1371/journal.pone.0208591 Text en © 2018 Dewan et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Dewan, Sumitra De Frenne, Pieter Vanden Broeck, An Steenackers, Marijke Vander Mijnsbrugge, Kristine Verheyen, Kris Transgenerational effects in asexually reproduced offspring of Populus |
title | Transgenerational effects in asexually reproduced offspring of Populus |
title_full | Transgenerational effects in asexually reproduced offspring of Populus |
title_fullStr | Transgenerational effects in asexually reproduced offspring of Populus |
title_full_unstemmed | Transgenerational effects in asexually reproduced offspring of Populus |
title_short | Transgenerational effects in asexually reproduced offspring of Populus |
title_sort | transgenerational effects in asexually reproduced offspring of populus |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283561/ https://www.ncbi.nlm.nih.gov/pubmed/30521624 http://dx.doi.org/10.1371/journal.pone.0208591 |
work_keys_str_mv | AT dewansumitra transgenerationaleffectsinasexuallyreproducedoffspringofpopulus AT defrennepieter transgenerationaleffectsinasexuallyreproducedoffspringofpopulus AT vandenbroeckan transgenerationaleffectsinasexuallyreproducedoffspringofpopulus AT steenackersmarijke transgenerationaleffectsinasexuallyreproducedoffspringofpopulus AT vandermijnsbruggekristine transgenerationaleffectsinasexuallyreproducedoffspringofpopulus AT verheyenkris transgenerationaleffectsinasexuallyreproducedoffspringofpopulus |