Cargando…

Accuracy of Calcium Scoring calculated from contrast-enhanced Coronary Computed Tomography Angiography using a dual-layer spectral CT: A comparison of Calcium Scoring from real and virtual non-contrast data

PURPOSE: Modern non-invasive evaluation of Coronary Artery Disease (CAD) requires non-contrast low dose Computed Tomography (CT) imaging for determination of Calcium Scoring (CACS) and contrast-enhanced imaging for evaluation of vascular stenosis. Several methods for calculation of CACS from contras...

Descripción completa

Detalles Bibliográficos
Autores principales: Nadjiri, Jonathan, Kaissis, Georgios, Meurer, Felix, Weis, Florian, Laugwitz, Karl-Ludwig, Straeter, Alexandra S., Muenzel, Daniela, Noël, Peter B., Rummeny, Ernst J., Rasper, Michael
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283621/
https://www.ncbi.nlm.nih.gov/pubmed/30521612
http://dx.doi.org/10.1371/journal.pone.0208588
_version_ 1783379196434710528
author Nadjiri, Jonathan
Kaissis, Georgios
Meurer, Felix
Weis, Florian
Laugwitz, Karl-Ludwig
Straeter, Alexandra S.
Muenzel, Daniela
Noël, Peter B.
Rummeny, Ernst J.
Rasper, Michael
author_facet Nadjiri, Jonathan
Kaissis, Georgios
Meurer, Felix
Weis, Florian
Laugwitz, Karl-Ludwig
Straeter, Alexandra S.
Muenzel, Daniela
Noël, Peter B.
Rummeny, Ernst J.
Rasper, Michael
author_sort Nadjiri, Jonathan
collection PubMed
description PURPOSE: Modern non-invasive evaluation of Coronary Artery Disease (CAD) requires non-contrast low dose Computed Tomography (CT) imaging for determination of Calcium Scoring (CACS) and contrast-enhanced imaging for evaluation of vascular stenosis. Several methods for calculation of CACS from contrast-enhanced images have been proposed before. The main principle for that is generation of virtual non-contrast images by iodine subtraction from a contrast-enhanced spectral CT dataset. However, those techniques have some limitations: Dual-Source CT imaging can lead to increased radiation exposure, and switching of the tube voltage (rapid kVp switching) can be associated with slower rotation speed of the gantry and is thus prone to motion artefacts that are especially critical in cardiac imaging. Both techniques cannot simultaneously acquire spectral data. A novel technique to overcome these difficulties is spectral imaging with a dual-layer detector. After absorption of the lower energetic photons in the first layer, the second layer detects a hardened spectrum of the emitted radiation resulting in registration of two different energy spectra at the same time. The objective of the present investigation was to evaluate the accuracy of virtual non-contrast CACS computed from spectral data in comparison to standard non-contrast imaging. METHODS: We consecutively investigated 20 patients referred to Coronary Computed Tomography Angiography (CCTA) with suspicion of CAD using a Dual-Layer spectral CT system (IQon; Philips Healthcare, The Netherlands). CACS was calculated from both, real- and virtual non-contrast images by certified software for medical use. Correlation analyses for real- and virtual non-contrast images and agreement evaluation with Bland-Altman-Plots were performed. RESULTS: Mean patient age was 57.7 ± 14 years (n = 20). 13 patients (65%) were male. Inter-quartile-range of clinical CACS was 0–448, the mean was 334. Correlation of CACS from real- and virtual non-contrast images was very high (0.94); p < 0.0001. The slope was 2.3 indicating that values from virtual non-contrast images are approximately half of the results obtained from real non-contrast data. Visual analysis of Bland-Altman-Plot shows good accordance of both methods when results from virtual non-contrast data are multiplied by the slope of the logistic regression model (2.3). The acquired power of this results is 0.99. CONCLUSION: Determination of Calcium Score from contrast enhanced CCTA using spectral imaging with a dual-layer detector is feasible and shows good agreement with the conventional technique when a proportionality factor is applied. The observed difference between both methods is due to an underestimation of plaque volume, and—to an even greater extend -an underestimation of plaque density with the virtual non-contrast approach. Our data suggest that radiation exposure can be reduced through omitting additional native scans for patients referred to CCTA when using a dual-layer spectral system without the usual limitations of dual energy analysis.
format Online
Article
Text
id pubmed-6283621
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Public Library of Science
record_format MEDLINE/PubMed
spelling pubmed-62836212018-12-20 Accuracy of Calcium Scoring calculated from contrast-enhanced Coronary Computed Tomography Angiography using a dual-layer spectral CT: A comparison of Calcium Scoring from real and virtual non-contrast data Nadjiri, Jonathan Kaissis, Georgios Meurer, Felix Weis, Florian Laugwitz, Karl-Ludwig Straeter, Alexandra S. Muenzel, Daniela Noël, Peter B. Rummeny, Ernst J. Rasper, Michael PLoS One Research Article PURPOSE: Modern non-invasive evaluation of Coronary Artery Disease (CAD) requires non-contrast low dose Computed Tomography (CT) imaging for determination of Calcium Scoring (CACS) and contrast-enhanced imaging for evaluation of vascular stenosis. Several methods for calculation of CACS from contrast-enhanced images have been proposed before. The main principle for that is generation of virtual non-contrast images by iodine subtraction from a contrast-enhanced spectral CT dataset. However, those techniques have some limitations: Dual-Source CT imaging can lead to increased radiation exposure, and switching of the tube voltage (rapid kVp switching) can be associated with slower rotation speed of the gantry and is thus prone to motion artefacts that are especially critical in cardiac imaging. Both techniques cannot simultaneously acquire spectral data. A novel technique to overcome these difficulties is spectral imaging with a dual-layer detector. After absorption of the lower energetic photons in the first layer, the second layer detects a hardened spectrum of the emitted radiation resulting in registration of two different energy spectra at the same time. The objective of the present investigation was to evaluate the accuracy of virtual non-contrast CACS computed from spectral data in comparison to standard non-contrast imaging. METHODS: We consecutively investigated 20 patients referred to Coronary Computed Tomography Angiography (CCTA) with suspicion of CAD using a Dual-Layer spectral CT system (IQon; Philips Healthcare, The Netherlands). CACS was calculated from both, real- and virtual non-contrast images by certified software for medical use. Correlation analyses for real- and virtual non-contrast images and agreement evaluation with Bland-Altman-Plots were performed. RESULTS: Mean patient age was 57.7 ± 14 years (n = 20). 13 patients (65%) were male. Inter-quartile-range of clinical CACS was 0–448, the mean was 334. Correlation of CACS from real- and virtual non-contrast images was very high (0.94); p < 0.0001. The slope was 2.3 indicating that values from virtual non-contrast images are approximately half of the results obtained from real non-contrast data. Visual analysis of Bland-Altman-Plot shows good accordance of both methods when results from virtual non-contrast data are multiplied by the slope of the logistic regression model (2.3). The acquired power of this results is 0.99. CONCLUSION: Determination of Calcium Score from contrast enhanced CCTA using spectral imaging with a dual-layer detector is feasible and shows good agreement with the conventional technique when a proportionality factor is applied. The observed difference between both methods is due to an underestimation of plaque volume, and—to an even greater extend -an underestimation of plaque density with the virtual non-contrast approach. Our data suggest that radiation exposure can be reduced through omitting additional native scans for patients referred to CCTA when using a dual-layer spectral system without the usual limitations of dual energy analysis. Public Library of Science 2018-12-06 /pmc/articles/PMC6283621/ /pubmed/30521612 http://dx.doi.org/10.1371/journal.pone.0208588 Text en © 2018 Nadjiri et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Research Article
Nadjiri, Jonathan
Kaissis, Georgios
Meurer, Felix
Weis, Florian
Laugwitz, Karl-Ludwig
Straeter, Alexandra S.
Muenzel, Daniela
Noël, Peter B.
Rummeny, Ernst J.
Rasper, Michael
Accuracy of Calcium Scoring calculated from contrast-enhanced Coronary Computed Tomography Angiography using a dual-layer spectral CT: A comparison of Calcium Scoring from real and virtual non-contrast data
title Accuracy of Calcium Scoring calculated from contrast-enhanced Coronary Computed Tomography Angiography using a dual-layer spectral CT: A comparison of Calcium Scoring from real and virtual non-contrast data
title_full Accuracy of Calcium Scoring calculated from contrast-enhanced Coronary Computed Tomography Angiography using a dual-layer spectral CT: A comparison of Calcium Scoring from real and virtual non-contrast data
title_fullStr Accuracy of Calcium Scoring calculated from contrast-enhanced Coronary Computed Tomography Angiography using a dual-layer spectral CT: A comparison of Calcium Scoring from real and virtual non-contrast data
title_full_unstemmed Accuracy of Calcium Scoring calculated from contrast-enhanced Coronary Computed Tomography Angiography using a dual-layer spectral CT: A comparison of Calcium Scoring from real and virtual non-contrast data
title_short Accuracy of Calcium Scoring calculated from contrast-enhanced Coronary Computed Tomography Angiography using a dual-layer spectral CT: A comparison of Calcium Scoring from real and virtual non-contrast data
title_sort accuracy of calcium scoring calculated from contrast-enhanced coronary computed tomography angiography using a dual-layer spectral ct: a comparison of calcium scoring from real and virtual non-contrast data
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283621/
https://www.ncbi.nlm.nih.gov/pubmed/30521612
http://dx.doi.org/10.1371/journal.pone.0208588
work_keys_str_mv AT nadjirijonathan accuracyofcalciumscoringcalculatedfromcontrastenhancedcoronarycomputedtomographyangiographyusingaduallayerspectralctacomparisonofcalciumscoringfromrealandvirtualnoncontrastdata
AT kaissisgeorgios accuracyofcalciumscoringcalculatedfromcontrastenhancedcoronarycomputedtomographyangiographyusingaduallayerspectralctacomparisonofcalciumscoringfromrealandvirtualnoncontrastdata
AT meurerfelix accuracyofcalciumscoringcalculatedfromcontrastenhancedcoronarycomputedtomographyangiographyusingaduallayerspectralctacomparisonofcalciumscoringfromrealandvirtualnoncontrastdata
AT weisflorian accuracyofcalciumscoringcalculatedfromcontrastenhancedcoronarycomputedtomographyangiographyusingaduallayerspectralctacomparisonofcalciumscoringfromrealandvirtualnoncontrastdata
AT laugwitzkarlludwig accuracyofcalciumscoringcalculatedfromcontrastenhancedcoronarycomputedtomographyangiographyusingaduallayerspectralctacomparisonofcalciumscoringfromrealandvirtualnoncontrastdata
AT straeteralexandras accuracyofcalciumscoringcalculatedfromcontrastenhancedcoronarycomputedtomographyangiographyusingaduallayerspectralctacomparisonofcalciumscoringfromrealandvirtualnoncontrastdata
AT muenzeldaniela accuracyofcalciumscoringcalculatedfromcontrastenhancedcoronarycomputedtomographyangiographyusingaduallayerspectralctacomparisonofcalciumscoringfromrealandvirtualnoncontrastdata
AT noelpeterb accuracyofcalciumscoringcalculatedfromcontrastenhancedcoronarycomputedtomographyangiographyusingaduallayerspectralctacomparisonofcalciumscoringfromrealandvirtualnoncontrastdata
AT rummenyernstj accuracyofcalciumscoringcalculatedfromcontrastenhancedcoronarycomputedtomographyangiographyusingaduallayerspectralctacomparisonofcalciumscoringfromrealandvirtualnoncontrastdata
AT raspermichael accuracyofcalciumscoringcalculatedfromcontrastenhancedcoronarycomputedtomographyangiographyusingaduallayerspectralctacomparisonofcalciumscoringfromrealandvirtualnoncontrastdata