Cargando…
A study for multiscale information transfer measures based on conditional mutual information
As the big data science develops, efficient methods are demanded for various data analysis. Granger causality provides the prime model for quantifying causal interactions. However, this theoretic model does not meet the requirement for real-world data analysis, because real-world time series are div...
Autores principales: | Wan, Xiaogeng, Xu, Lanxi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283631/ https://www.ncbi.nlm.nih.gov/pubmed/30521578 http://dx.doi.org/10.1371/journal.pone.0208423 |
Ejemplares similares
-
Information Bottleneck Analysis by a Conditional Mutual Information Bound
por: Tezuka, Taro, et al.
Publicado: (2021) -
An information-based network approach for protein classification
por: Wan, Xiaogeng, et al.
Publicado: (2017) -
Estimating Conditional Transfer Entropy in Time Series Using Mutual Information and Nonlinear Prediction
por: Shahsavari Baboukani, Payam, et al.
Publicado: (2020) -
Multi-Label Feature Selection with Conditional Mutual Information
por: Wang, Xiujuan, et al.
Publicado: (2022) -
Gene Regulatory Network Reconstruction Using Conditional Mutual Information
por: Liang, Kuo-Ching, et al.
Publicado: (2008)