Cargando…

Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy

Analysis of sleep for the diagnosis of sleep disorders such as Type-1 Narcolepsy (T1N) currently requires visual inspection of polysomnography records by trained scoring technicians. Here, we used neural networks in approximately 3,000 normal and abnormal sleep recordings to automate sleep stage sco...

Descripción completa

Detalles Bibliográficos
Autores principales: Stephansen, Jens B., Olesen, Alexander N., Olsen, Mads, Ambati, Aditya, Leary, Eileen B., Moore, Hyatt E., Carrillo, Oscar, Lin, Ling, Han, Fang, Yan, Han, Sun, Yun L., Dauvilliers, Yves, Scholz, Sabine, Barateau, Lucie, Hogl, Birgit, Stefani, Ambra, Hong, Seung Chul, Kim, Tae Won, Pizza, Fabio, Plazzi, Giuseppe, Vandi, Stefano, Antelmi, Elena, Perrin, Dimitri, Kuna, Samuel T., Schweitzer, Paula K., Kushida, Clete, Peppard, Paul E., Sorensen, Helge B. D., Jennum, Poul, Mignot, Emmanuel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283836/
https://www.ncbi.nlm.nih.gov/pubmed/30523329
http://dx.doi.org/10.1038/s41467-018-07229-3
_version_ 1783379228277866496
author Stephansen, Jens B.
Olesen, Alexander N.
Olsen, Mads
Ambati, Aditya
Leary, Eileen B.
Moore, Hyatt E.
Carrillo, Oscar
Lin, Ling
Han, Fang
Yan, Han
Sun, Yun L.
Dauvilliers, Yves
Scholz, Sabine
Barateau, Lucie
Hogl, Birgit
Stefani, Ambra
Hong, Seung Chul
Kim, Tae Won
Pizza, Fabio
Plazzi, Giuseppe
Vandi, Stefano
Antelmi, Elena
Perrin, Dimitri
Kuna, Samuel T.
Schweitzer, Paula K.
Kushida, Clete
Peppard, Paul E.
Sorensen, Helge B. D.
Jennum, Poul
Mignot, Emmanuel
author_facet Stephansen, Jens B.
Olesen, Alexander N.
Olsen, Mads
Ambati, Aditya
Leary, Eileen B.
Moore, Hyatt E.
Carrillo, Oscar
Lin, Ling
Han, Fang
Yan, Han
Sun, Yun L.
Dauvilliers, Yves
Scholz, Sabine
Barateau, Lucie
Hogl, Birgit
Stefani, Ambra
Hong, Seung Chul
Kim, Tae Won
Pizza, Fabio
Plazzi, Giuseppe
Vandi, Stefano
Antelmi, Elena
Perrin, Dimitri
Kuna, Samuel T.
Schweitzer, Paula K.
Kushida, Clete
Peppard, Paul E.
Sorensen, Helge B. D.
Jennum, Poul
Mignot, Emmanuel
author_sort Stephansen, Jens B.
collection PubMed
description Analysis of sleep for the diagnosis of sleep disorders such as Type-1 Narcolepsy (T1N) currently requires visual inspection of polysomnography records by trained scoring technicians. Here, we used neural networks in approximately 3,000 normal and abnormal sleep recordings to automate sleep stage scoring, producing a hypnodensity graph—a probability distribution conveying more information than classical hypnograms. Accuracy of sleep stage scoring was validated in 70 subjects assessed by six scorers. The best model performed better than any individual scorer (87% versus consensus). It also reliably scores sleep down to 5 s instead of 30 s scoring epochs. A T1N marker based on unusual sleep stage overlaps achieved a specificity of 96% and a sensitivity of 91%, validated in independent datasets. Addition of HLA-DQB1*06:02 typing increased specificity to 99%. Our method can reduce time spent in sleep clinics and automates T1N diagnosis. It also opens the possibility of diagnosing T1N using home sleep studies.
format Online
Article
Text
id pubmed-6283836
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-62838362018-12-10 Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy Stephansen, Jens B. Olesen, Alexander N. Olsen, Mads Ambati, Aditya Leary, Eileen B. Moore, Hyatt E. Carrillo, Oscar Lin, Ling Han, Fang Yan, Han Sun, Yun L. Dauvilliers, Yves Scholz, Sabine Barateau, Lucie Hogl, Birgit Stefani, Ambra Hong, Seung Chul Kim, Tae Won Pizza, Fabio Plazzi, Giuseppe Vandi, Stefano Antelmi, Elena Perrin, Dimitri Kuna, Samuel T. Schweitzer, Paula K. Kushida, Clete Peppard, Paul E. Sorensen, Helge B. D. Jennum, Poul Mignot, Emmanuel Nat Commun Article Analysis of sleep for the diagnosis of sleep disorders such as Type-1 Narcolepsy (T1N) currently requires visual inspection of polysomnography records by trained scoring technicians. Here, we used neural networks in approximately 3,000 normal and abnormal sleep recordings to automate sleep stage scoring, producing a hypnodensity graph—a probability distribution conveying more information than classical hypnograms. Accuracy of sleep stage scoring was validated in 70 subjects assessed by six scorers. The best model performed better than any individual scorer (87% versus consensus). It also reliably scores sleep down to 5 s instead of 30 s scoring epochs. A T1N marker based on unusual sleep stage overlaps achieved a specificity of 96% and a sensitivity of 91%, validated in independent datasets. Addition of HLA-DQB1*06:02 typing increased specificity to 99%. Our method can reduce time spent in sleep clinics and automates T1N diagnosis. It also opens the possibility of diagnosing T1N using home sleep studies. Nature Publishing Group UK 2018-12-06 /pmc/articles/PMC6283836/ /pubmed/30523329 http://dx.doi.org/10.1038/s41467-018-07229-3 Text en © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Stephansen, Jens B.
Olesen, Alexander N.
Olsen, Mads
Ambati, Aditya
Leary, Eileen B.
Moore, Hyatt E.
Carrillo, Oscar
Lin, Ling
Han, Fang
Yan, Han
Sun, Yun L.
Dauvilliers, Yves
Scholz, Sabine
Barateau, Lucie
Hogl, Birgit
Stefani, Ambra
Hong, Seung Chul
Kim, Tae Won
Pizza, Fabio
Plazzi, Giuseppe
Vandi, Stefano
Antelmi, Elena
Perrin, Dimitri
Kuna, Samuel T.
Schweitzer, Paula K.
Kushida, Clete
Peppard, Paul E.
Sorensen, Helge B. D.
Jennum, Poul
Mignot, Emmanuel
Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy
title Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy
title_full Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy
title_fullStr Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy
title_full_unstemmed Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy
title_short Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy
title_sort neural network analysis of sleep stages enables efficient diagnosis of narcolepsy
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283836/
https://www.ncbi.nlm.nih.gov/pubmed/30523329
http://dx.doi.org/10.1038/s41467-018-07229-3
work_keys_str_mv AT stephansenjensb neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT olesenalexandern neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT olsenmads neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT ambatiaditya neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT learyeileenb neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT moorehyatte neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT carrillooscar neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT linling neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT hanfang neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT yanhan neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT sunyunl neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT dauvilliersyves neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT scholzsabine neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT barateaulucie neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT hoglbirgit neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT stefaniambra neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT hongseungchul neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT kimtaewon neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT pizzafabio neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT plazzigiuseppe neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT vandistefano neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT antelmielena neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT perrindimitri neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT kunasamuelt neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT schweitzerpaulak neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT kushidaclete neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT peppardpaule neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT sorensenhelgebd neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT jennumpoul neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy
AT mignotemmanuel neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy