Cargando…
Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy
Analysis of sleep for the diagnosis of sleep disorders such as Type-1 Narcolepsy (T1N) currently requires visual inspection of polysomnography records by trained scoring technicians. Here, we used neural networks in approximately 3,000 normal and abnormal sleep recordings to automate sleep stage sco...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283836/ https://www.ncbi.nlm.nih.gov/pubmed/30523329 http://dx.doi.org/10.1038/s41467-018-07229-3 |
_version_ | 1783379228277866496 |
---|---|
author | Stephansen, Jens B. Olesen, Alexander N. Olsen, Mads Ambati, Aditya Leary, Eileen B. Moore, Hyatt E. Carrillo, Oscar Lin, Ling Han, Fang Yan, Han Sun, Yun L. Dauvilliers, Yves Scholz, Sabine Barateau, Lucie Hogl, Birgit Stefani, Ambra Hong, Seung Chul Kim, Tae Won Pizza, Fabio Plazzi, Giuseppe Vandi, Stefano Antelmi, Elena Perrin, Dimitri Kuna, Samuel T. Schweitzer, Paula K. Kushida, Clete Peppard, Paul E. Sorensen, Helge B. D. Jennum, Poul Mignot, Emmanuel |
author_facet | Stephansen, Jens B. Olesen, Alexander N. Olsen, Mads Ambati, Aditya Leary, Eileen B. Moore, Hyatt E. Carrillo, Oscar Lin, Ling Han, Fang Yan, Han Sun, Yun L. Dauvilliers, Yves Scholz, Sabine Barateau, Lucie Hogl, Birgit Stefani, Ambra Hong, Seung Chul Kim, Tae Won Pizza, Fabio Plazzi, Giuseppe Vandi, Stefano Antelmi, Elena Perrin, Dimitri Kuna, Samuel T. Schweitzer, Paula K. Kushida, Clete Peppard, Paul E. Sorensen, Helge B. D. Jennum, Poul Mignot, Emmanuel |
author_sort | Stephansen, Jens B. |
collection | PubMed |
description | Analysis of sleep for the diagnosis of sleep disorders such as Type-1 Narcolepsy (T1N) currently requires visual inspection of polysomnography records by trained scoring technicians. Here, we used neural networks in approximately 3,000 normal and abnormal sleep recordings to automate sleep stage scoring, producing a hypnodensity graph—a probability distribution conveying more information than classical hypnograms. Accuracy of sleep stage scoring was validated in 70 subjects assessed by six scorers. The best model performed better than any individual scorer (87% versus consensus). It also reliably scores sleep down to 5 s instead of 30 s scoring epochs. A T1N marker based on unusual sleep stage overlaps achieved a specificity of 96% and a sensitivity of 91%, validated in independent datasets. Addition of HLA-DQB1*06:02 typing increased specificity to 99%. Our method can reduce time spent in sleep clinics and automates T1N diagnosis. It also opens the possibility of diagnosing T1N using home sleep studies. |
format | Online Article Text |
id | pubmed-6283836 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-62838362018-12-10 Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy Stephansen, Jens B. Olesen, Alexander N. Olsen, Mads Ambati, Aditya Leary, Eileen B. Moore, Hyatt E. Carrillo, Oscar Lin, Ling Han, Fang Yan, Han Sun, Yun L. Dauvilliers, Yves Scholz, Sabine Barateau, Lucie Hogl, Birgit Stefani, Ambra Hong, Seung Chul Kim, Tae Won Pizza, Fabio Plazzi, Giuseppe Vandi, Stefano Antelmi, Elena Perrin, Dimitri Kuna, Samuel T. Schweitzer, Paula K. Kushida, Clete Peppard, Paul E. Sorensen, Helge B. D. Jennum, Poul Mignot, Emmanuel Nat Commun Article Analysis of sleep for the diagnosis of sleep disorders such as Type-1 Narcolepsy (T1N) currently requires visual inspection of polysomnography records by trained scoring technicians. Here, we used neural networks in approximately 3,000 normal and abnormal sleep recordings to automate sleep stage scoring, producing a hypnodensity graph—a probability distribution conveying more information than classical hypnograms. Accuracy of sleep stage scoring was validated in 70 subjects assessed by six scorers. The best model performed better than any individual scorer (87% versus consensus). It also reliably scores sleep down to 5 s instead of 30 s scoring epochs. A T1N marker based on unusual sleep stage overlaps achieved a specificity of 96% and a sensitivity of 91%, validated in independent datasets. Addition of HLA-DQB1*06:02 typing increased specificity to 99%. Our method can reduce time spent in sleep clinics and automates T1N diagnosis. It also opens the possibility of diagnosing T1N using home sleep studies. Nature Publishing Group UK 2018-12-06 /pmc/articles/PMC6283836/ /pubmed/30523329 http://dx.doi.org/10.1038/s41467-018-07229-3 Text en © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Stephansen, Jens B. Olesen, Alexander N. Olsen, Mads Ambati, Aditya Leary, Eileen B. Moore, Hyatt E. Carrillo, Oscar Lin, Ling Han, Fang Yan, Han Sun, Yun L. Dauvilliers, Yves Scholz, Sabine Barateau, Lucie Hogl, Birgit Stefani, Ambra Hong, Seung Chul Kim, Tae Won Pizza, Fabio Plazzi, Giuseppe Vandi, Stefano Antelmi, Elena Perrin, Dimitri Kuna, Samuel T. Schweitzer, Paula K. Kushida, Clete Peppard, Paul E. Sorensen, Helge B. D. Jennum, Poul Mignot, Emmanuel Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy |
title | Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy |
title_full | Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy |
title_fullStr | Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy |
title_full_unstemmed | Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy |
title_short | Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy |
title_sort | neural network analysis of sleep stages enables efficient diagnosis of narcolepsy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283836/ https://www.ncbi.nlm.nih.gov/pubmed/30523329 http://dx.doi.org/10.1038/s41467-018-07229-3 |
work_keys_str_mv | AT stephansenjensb neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT olesenalexandern neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT olsenmads neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT ambatiaditya neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT learyeileenb neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT moorehyatte neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT carrillooscar neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT linling neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT hanfang neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT yanhan neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT sunyunl neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT dauvilliersyves neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT scholzsabine neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT barateaulucie neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT hoglbirgit neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT stefaniambra neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT hongseungchul neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT kimtaewon neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT pizzafabio neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT plazzigiuseppe neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT vandistefano neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT antelmielena neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT perrindimitri neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT kunasamuelt neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT schweitzerpaulak neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT kushidaclete neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT peppardpaule neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT sorensenhelgebd neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT jennumpoul neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy AT mignotemmanuel neuralnetworkanalysisofsleepstagesenablesefficientdiagnosisofnarcolepsy |