Cargando…
Sparse identification of nonlinear dynamics for model predictive control in the low-data limit
Data-driven discovery of dynamics via machine learning is pushing the frontiers of modelling and control efforts, providing a tremendous opportunity to extend the reach of model predictive control (MPC). However, many leading methods in machine learning, such as neural networks (NN), require large v...
Autores principales: | Kaiser, E., Kutz, J. N., Brunton, S. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society Publishing
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6283900/ https://www.ncbi.nlm.nih.gov/pubmed/30839858 http://dx.doi.org/10.1098/rspa.2018.0335 |
Ejemplares similares
-
Ensemble-SINDy: Robust sparse model discovery in the low-data, high-noise limit, with active learning and control
por: Fasel, U., et al.
Publicado: (2022) -
SINDy-PI: a robust algorithm for parallel implicit sparse identification of nonlinear dynamics
por: Kaheman, Kadierdan, et al.
Publicado: (2020) -
Sparse nonlinear models of chaotic electroconvection
por: Guan, Yifei, et al.
Publicado: (2021) -
Model selection for hybrid dynamical systems via sparse regression
por: Mangan, N. M., et al.
Publicado: (2019) -
Model selection for dynamical systems via sparse regression and information criteria
por: Mangan, N. M., et al.
Publicado: (2017)