Cargando…
From CsPbBr(3) Nano-Inks to Sintered CsPbBr(3)–CsPb(2)Br(5) Films via Thermal Annealing: Implications on Optoelectronic Properties
[Image: see text] CsPbBr(3) nanocrystals passivated with short molecular ligands and deposited on a substrate were annealed from room temperature to 400 °C in inert atmosphere. Chemical, structural, and morphological transformations were monitored in situ and ex situ by different techniques, while o...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2017
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284206/ https://www.ncbi.nlm.nih.gov/pubmed/30546817 http://dx.doi.org/10.1021/acs.jpcc.7b03389 |
Sumario: | [Image: see text] CsPbBr(3) nanocrystals passivated with short molecular ligands and deposited on a substrate were annealed from room temperature to 400 °C in inert atmosphere. Chemical, structural, and morphological transformations were monitored in situ and ex situ by different techniques, while optoelectronic properties of the film were also assessed. Annealing at 100 °C resulted in a 1 order of magnitude increase in photocurrent and photoresponse as a result of partial sintering of the NCs and residual solvent evaporation. Beyond 150 °C the original orthorhombic NCs were partially transformed into tetragonal CsPb(2)Br(5) crystals, due to the desorption of weakly bound propionic acid ligands. The photocurrent increased moderately until 300 °C although the photoresponse became slower as a result of the formation of surface trap states. Eventually, annealing beyond 350 °C removed the strongly bound butylamine ligands and reversed the transition to the original orthorhombic phase, with a loss of photocurrent due to the numerous defects induced by the stripping of the passivating butylamine. |
---|