Cargando…
Automatic seizure detection using three-dimensional CNN based on multi-channel EEG
BACKGROUND: Automated seizure detection from clinical EEG data can reduce the diagnosis time and facilitate targeting treatment for epileptic patients. However, current detection approaches mainly rely on limited features manually designed by domain experts, which are inflexible for the detection of...
Autores principales: | Wei, Xiaoyan, Zhou, Lin, Chen, Ziyi, Zhang, Liangjun, Zhou, Yi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284363/ https://www.ncbi.nlm.nih.gov/pubmed/30526571 http://dx.doi.org/10.1186/s12911-018-0693-8 |
Ejemplares similares
-
Epileptic Seizure Detection Based on EEG Signals and CNN
por: Zhou, Mengni, et al.
Publicado: (2018) -
Research on epileptic EEG recognition based on improved residual networks of 1-D CNN and indRNN
por: Ma, Mengnan, et al.
Publicado: (2021) -
A One-Dimensional CNN-LSTM Model for Epileptic Seizure Recognition Using EEG Signal Analysis
por: Xu, Gaowei, et al.
Publicado: (2020) -
Two-dimensional CNN-based distinction of human emotions from EEG channels selected by multi-objective evolutionary algorithm
por: Moctezuma, Luis Alfredo, et al.
Publicado: (2022) -
Neuromorphic Architecture Accelerated Automated Seizure Detection in Multi-Channel Scalp EEG
por: Ambati, Ravi, et al.
Publicado: (2022)