Cargando…

Binocular Summation for Reflexive Eye Movements: A Potential Diagnostic Tool for Stereodeficiencies

PURPOSE: Stereoscopic vision, by detecting interocular correlations, enhances depth perception. Stereodeficiencies often emerge during the first months of life, and left untreated can lead to severe loss of visual acuity in one eye and/or strabismus. Early treatment results in much better outcomes,...

Descripción completa

Detalles Bibliográficos
Autores principales: Quaia, Christian, FitzGibbon, Edmond J., Optican, Lance M., Cumming, Bruce G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Association for Research in Vision and Ophthalmology 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284466/
https://www.ncbi.nlm.nih.gov/pubmed/30521669
http://dx.doi.org/10.1167/iovs.18-24520
Descripción
Sumario:PURPOSE: Stereoscopic vision, by detecting interocular correlations, enhances depth perception. Stereodeficiencies often emerge during the first months of life, and left untreated can lead to severe loss of visual acuity in one eye and/or strabismus. Early treatment results in much better outcomes, yet diagnostic tests for infants are cumbersome and not widely available. We asked whether reflexive eye movements, which in principle can be recorded even in infants, can be used to identify stereodeficiencies. METHODS: Reflexive ocular following eye movements induced by fast drifting noise stimuli were recorded in 10 adult human participants (5 with normal stereoacuity, 5 stereodeficient). To manipulate interocular correlation, the stimuli shown to the two eyes were either identical, different, or had opposite contrast. Monocular presentations were also interleaved. The participants were asked to passively fixate the screen. RESULTS: In the participants with normal stereoacuity, the responses to binocular identical stimuli were significantly larger than those induced by binocular opposite stimuli. In the stereodeficient participants the responses were indistinguishable. Despite the small size of ocular following responses, 40 trials, corresponding to less than 2 minutes of testing, were sufficient to reliably differentiate normal from stereodeficient participants. CONCLUSIONS: Ocular-following eye movements, because of their reliance on cortical neurons sensitive to interocular correlations, are affected by stereodeficiencies. Because these eye movements can be recorded noninvasively and with minimal participant cooperation, they can potentially be measured even in infants and might thus provide an useful screening tool for this currently underserved population.