Cargando…
Distillation of the clinical algorithm improves prognosis by multi-task deep learning in high-risk Neuroblastoma
We introduce the CDRP (Concatenated Diagnostic-Relapse Prognostic) architecture for multi-task deep learning that incorporates a clinical algorithm, e.g., a risk stratification schema to improve prognostic profiling. We present the first application to survival prediction in High-Risk (HR) Neuroblas...
Autores principales: | Maggio, Valerio, Chierici, Marco, Jurman, Giuseppe, Furlanello, Cesare |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6285384/ https://www.ncbi.nlm.nih.gov/pubmed/30532223 http://dx.doi.org/10.1371/journal.pone.0208924 |
Ejemplares similares
-
Multi-omics integration for neuroblastoma clinical endpoint prediction
por: Francescatto, Margherita, et al.
Publicado: (2018) -
Evaluating reproducibility of AI algorithms in digital pathology with DAPPER
por: Bizzego, Andrea, et al.
Publicado: (2019) -
Phylogenetic convolutional neural networks in metagenomics
por: Fioravanti, Diego, et al.
Publicado: (2018) -
Predictability of drug-induced liver injury by machine learning
por: Chierici, Marco, et al.
Publicado: (2020) -
Cellular and gene signatures of tumor-infiltrating dendritic cells and natural-killer cells predict prognosis of neuroblastoma
por: Melaiu, Ombretta, et al.
Publicado: (2020)