Cargando…
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
Knowing the catalytic turnover numbers of enzymes is essential for understanding the growth rate, proteome composition, and physiology of organisms, but experimental data on enzyme turnover numbers is sparse and noisy. Here, we demonstrate that machine learning can successfully predict catalytic tur...
Autores principales: | Heckmann, David, Lloyd, Colton J., Mih, Nathan, Ha, Yuanchi, Zielinski, Daniel C., Haiman, Zachary B., Desouki, Abdelmoneim Amer, Lercher, Martin J., Palsson, Bernhard O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286351/ https://www.ncbi.nlm.nih.gov/pubmed/30531987 http://dx.doi.org/10.1038/s41467-018-07652-6 |
Ejemplares similares
-
Kinetic profiling of metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers
por: Heckmann, David, et al.
Publicado: (2020) -
Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
por: Heckmann, David, et al.
Publicado: (2018) -
Alleles of a gene differ in pleiotropy, often mediated through currency metabolite production, in E. coli and yeast metabolic simulations
por: Alzoubi, Deya, et al.
Publicado: (2018) -
Flux balance analysis with or without molecular crowding fails to predict two thirds of experimentally observed epistasis in yeast
por: Alzoubi, Deya, et al.
Publicado: (2019) -
Turnover number predictions for kinetically uncharacterized enzymes using machine and deep learning
por: Kroll, Alexander, et al.
Publicado: (2023)