Cargando…
Macroevolution of sexual size dimorphism and reproduction-related phenotypic traits in lizards of the Chaco Domain
BACKGROUND: Comparing sexual size dimorphism (SSD) in the light of the phylogenetic hypothesis may help to understand the phenotypic evolution associated with sexual selection (size of whole body and of reproduction-related body parts). Within a macroevolutionary framework, we evaluated the associat...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286517/ https://www.ncbi.nlm.nih.gov/pubmed/30526474 http://dx.doi.org/10.1186/s12862-018-1299-6 |
Sumario: | BACKGROUND: Comparing sexual size dimorphism (SSD) in the light of the phylogenetic hypothesis may help to understand the phenotypic evolution associated with sexual selection (size of whole body and of reproduction-related body parts). Within a macroevolutionary framework, we evaluated the association between the evolution of SSD and the evolution of reproduction-related phenotypic traits, and whether this association has favored female fecundity, considering also variations according to reproductive modes. We focused on the lizard species that inhabit the Chaco Domain since this is a natural unit with a high diversity of species. RESULTS: The residual SSD was related positively with the residuals of the reproduction-related phenotypic traits that estimate intrasexual selection and with the residuals of inter-limb length and, according to fecundity selection, those residuals were related positively with the residuals of clutch size in oviparous species. Lizards of the Chaco Domain present a high diversity of SSD patterns, probably related to the evolution of reproductive strategies. CONCLUSIONS: Our findings highlight that the sexual selection may have acted on the whole-body size as well as on the size of body parts related to reproduction. Male and female phenotypes evolutionarily respond to variations in SSD, and an understanding of these patterns is essential for elucidating the processes shaping sexual phenotype diversity from a macroevolutionary perspective. |
---|