Cargando…

Comparison of speed versus complexity effects on the hemodynamic response of the trail making test in block designs

The use of functional near-infrared spectroscopy (fNIRS) in block designs provides measures of cortical activity in ecologically valid environments. However, in some cases, the use of block designs may be problematic when data are not corrected for performance in a time-restricted block. We sought t...

Descripción completa

Detalles Bibliográficos
Autores principales: Rosenbaum, David, Blum, Leonore, Schweizer, Paul, Fallgatter, Andreas J., Herrmann, Martin J., Ehlis, Ann-Christine, Metzger, Florian G.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Society of Photo-Optical Instrumentation Engineers 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286664/
https://www.ncbi.nlm.nih.gov/pubmed/30539043
http://dx.doi.org/10.1117/1.NPh.5.4.045007
Descripción
Sumario:The use of functional near-infrared spectroscopy (fNIRS) in block designs provides measures of cortical activity in ecologically valid environments. However, in some cases, the use of block designs may be problematic when data are not corrected for performance in a time-restricted block. We sought to investigate the effects of task complexity and processing speed on hemodynamic responses in an fNIRS block design. To differentiate the effects of task complexity and processing speed, 20 subjects completed the trail making test (TMT) in two versions (TMT-A versus TMT-B) and three different speed levels (slow versus moderate versus fast). During TMT-A, subjects are asked to connect encircled numbers in numerically ascending order (1-2-3…). In the more complex TMT-B, subjects are instructed to connect encircled numbers and letters in alternating ascending order (1-A-2-B…). To illustrate the obscuring effects of processing speed on task complexity, we perform two different analyses. First, we analyze the classical measures of oxygenated blood, and second, we analyze the measures corrected for the number of processed items. Our results show large effects for processing speed within the bilateral inferior frontal gyrus, left dorsolateral prefrontal cortex, and superior parietal lobule (SPL). The TMT contrast did not show significant effects with classical measures, although trends are observed for higher activation during TMT-B. When corrected for processed items, higher activity for TMT-B in comparison to TMT-A is found within the SPL. The results are discussed in light of recent research designs, and simple to use correction methods are suggested.