Cargando…

Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice

BACKGROUND: Mesenchymal stem/stromal cells (MSCs) are a promising tool for cell-based therapies in the treatment of tissue injury. The stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) axis plays a significant role in directing MSC homing to sites of injury. However in vivo MSC...

Descripción completa

Detalles Bibliográficos
Autores principales: Jin, Wang, Liang, Xiaowen, Brooks, Anastasia, Futrega, Kathryn, Liu, Xin, Doran, Michael R., Simpson, Matthew J., Roberts, Michael S., Wang, Haolu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: PeerJ Inc. 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286806/
https://www.ncbi.nlm.nih.gov/pubmed/30564525
http://dx.doi.org/10.7717/peerj.6072
_version_ 1783379527825620992
author Jin, Wang
Liang, Xiaowen
Brooks, Anastasia
Futrega, Kathryn
Liu, Xin
Doran, Michael R.
Simpson, Matthew J.
Roberts, Michael S.
Wang, Haolu
author_facet Jin, Wang
Liang, Xiaowen
Brooks, Anastasia
Futrega, Kathryn
Liu, Xin
Doran, Michael R.
Simpson, Matthew J.
Roberts, Michael S.
Wang, Haolu
author_sort Jin, Wang
collection PubMed
description BACKGROUND: Mesenchymal stem/stromal cells (MSCs) are a promising tool for cell-based therapies in the treatment of tissue injury. The stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) axis plays a significant role in directing MSC homing to sites of injury. However in vivo MSC distribution following intravenous transplantation remains poorly understood, potentially hampering the precise prediction and evaluation of therapeutic efficacy. METHODS: A murine model of partial ischemia/reperfusion (I/R) is used to induce liver injury, increase the hepatic levels of SDF-1, and study in vivo MSC distribution. Hypoxia-preconditioning increases the expression of CXCR4 in human bone marrow-derived MSCs. Quantitative assays for human DNA using droplet digital PCR (ddPCR) allow us to examine the in vivo kinetics of intravenously infused human MSCs in mouse blood and liver. A mathematical model-based system is developed to characterize in vivo homing of human MSCs in mouse models with SDF-1 levels in liver and CXCR4 expression on the transfused MSCs. The model is calibrated to experimental data to provide novel estimates of relevant parameter values. RESULTS: Images of immunohistochemistry for SDF-1 in the mouse liver with I/R injury show a significantly higher SDF-1 level in the I/R injured liver than that in the control. Correspondingly, the ddPCR results illustrate a higher MSC concentration in the I/R injured liver than the normal liver. CXCR4 is overexpressed in hypoxia-preconditioned MSCs. An increased number of hypoxia-preconditioned MSCs in the I/R injured liver is observed from the ddPCR results. The model simulations align with the experimental data of control and hypoxia-preconditioned human MSC distribution in normal and injured mouse livers, and accurately predict the experimental outcomes with different MSC doses. DISCUSSION: The modelling results suggest that SDF-1 in organs is an effective in vivo attractant for MSCs through the SDF-1/CXCR4 axis and reveal the significance of the SDF-1/CXCR4 chemotaxis on in vivo homing of MSCs. This in vivo modelling approach allows qualitative characterization and prediction of the MSC homing to normal and injured organs on the basis of clinically accessible variables, such as the MSC dose and SDF-1 concentration in blood. This model could also be adapted to abnormal conditions and/or other types of circulating cells to predict in vivo homing patterns.
format Online
Article
Text
id pubmed-6286806
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher PeerJ Inc.
record_format MEDLINE/PubMed
spelling pubmed-62868062018-12-18 Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice Jin, Wang Liang, Xiaowen Brooks, Anastasia Futrega, Kathryn Liu, Xin Doran, Michael R. Simpson, Matthew J. Roberts, Michael S. Wang, Haolu PeerJ Cell Biology BACKGROUND: Mesenchymal stem/stromal cells (MSCs) are a promising tool for cell-based therapies in the treatment of tissue injury. The stromal cell-derived factor-1 (SDF-1)/CXC chemokine receptor 4 (CXCR4) axis plays a significant role in directing MSC homing to sites of injury. However in vivo MSC distribution following intravenous transplantation remains poorly understood, potentially hampering the precise prediction and evaluation of therapeutic efficacy. METHODS: A murine model of partial ischemia/reperfusion (I/R) is used to induce liver injury, increase the hepatic levels of SDF-1, and study in vivo MSC distribution. Hypoxia-preconditioning increases the expression of CXCR4 in human bone marrow-derived MSCs. Quantitative assays for human DNA using droplet digital PCR (ddPCR) allow us to examine the in vivo kinetics of intravenously infused human MSCs in mouse blood and liver. A mathematical model-based system is developed to characterize in vivo homing of human MSCs in mouse models with SDF-1 levels in liver and CXCR4 expression on the transfused MSCs. The model is calibrated to experimental data to provide novel estimates of relevant parameter values. RESULTS: Images of immunohistochemistry for SDF-1 in the mouse liver with I/R injury show a significantly higher SDF-1 level in the I/R injured liver than that in the control. Correspondingly, the ddPCR results illustrate a higher MSC concentration in the I/R injured liver than the normal liver. CXCR4 is overexpressed in hypoxia-preconditioned MSCs. An increased number of hypoxia-preconditioned MSCs in the I/R injured liver is observed from the ddPCR results. The model simulations align with the experimental data of control and hypoxia-preconditioned human MSC distribution in normal and injured mouse livers, and accurately predict the experimental outcomes with different MSC doses. DISCUSSION: The modelling results suggest that SDF-1 in organs is an effective in vivo attractant for MSCs through the SDF-1/CXCR4 axis and reveal the significance of the SDF-1/CXCR4 chemotaxis on in vivo homing of MSCs. This in vivo modelling approach allows qualitative characterization and prediction of the MSC homing to normal and injured organs on the basis of clinically accessible variables, such as the MSC dose and SDF-1 concentration in blood. This model could also be adapted to abnormal conditions and/or other types of circulating cells to predict in vivo homing patterns. PeerJ Inc. 2018-12-06 /pmc/articles/PMC6286806/ /pubmed/30564525 http://dx.doi.org/10.7717/peerj.6072 Text en ©2018 Jin et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited.
spellingShingle Cell Biology
Jin, Wang
Liang, Xiaowen
Brooks, Anastasia
Futrega, Kathryn
Liu, Xin
Doran, Michael R.
Simpson, Matthew J.
Roberts, Michael S.
Wang, Haolu
Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice
title Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice
title_full Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice
title_fullStr Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice
title_full_unstemmed Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice
title_short Modelling of the SDF-1/CXCR4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice
title_sort modelling of the sdf-1/cxcr4 regulated in vivo homing of therapeutic mesenchymal stem/stromal cells in mice
topic Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6286806/
https://www.ncbi.nlm.nih.gov/pubmed/30564525
http://dx.doi.org/10.7717/peerj.6072
work_keys_str_mv AT jinwang modellingofthesdf1cxcr4regulatedinvivohomingoftherapeuticmesenchymalstemstromalcellsinmice
AT liangxiaowen modellingofthesdf1cxcr4regulatedinvivohomingoftherapeuticmesenchymalstemstromalcellsinmice
AT brooksanastasia modellingofthesdf1cxcr4regulatedinvivohomingoftherapeuticmesenchymalstemstromalcellsinmice
AT futregakathryn modellingofthesdf1cxcr4regulatedinvivohomingoftherapeuticmesenchymalstemstromalcellsinmice
AT liuxin modellingofthesdf1cxcr4regulatedinvivohomingoftherapeuticmesenchymalstemstromalcellsinmice
AT doranmichaelr modellingofthesdf1cxcr4regulatedinvivohomingoftherapeuticmesenchymalstemstromalcellsinmice
AT simpsonmatthewj modellingofthesdf1cxcr4regulatedinvivohomingoftherapeuticmesenchymalstemstromalcellsinmice
AT robertsmichaels modellingofthesdf1cxcr4regulatedinvivohomingoftherapeuticmesenchymalstemstromalcellsinmice
AT wanghaolu modellingofthesdf1cxcr4regulatedinvivohomingoftherapeuticmesenchymalstemstromalcellsinmice