Cargando…
The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance
In order to study the relationship between the structure and function of AmpG, structure, site-specific mutation, and gene complementary experiments have been performed against the clinical isolates of Pseudomonas aeruginosa. We found that there are 51 nucleotide variations at 34 loci over the ampG...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287161/ https://www.ncbi.nlm.nih.gov/pubmed/30598711 http://dx.doi.org/10.1155/2018/7170416 |
_version_ | 1783379589133762560 |
---|---|
author | Chang, Qingli Wu, Chongyang Lin, Chaoqing Li, Peizhen Zhang, Kaibo Xu, Lei Liu, Yabo Lu, Junwan Cheng, Cong Bao, Qiyu Hu, Yunliang Lu, Shunfei Li, Jinsong |
author_facet | Chang, Qingli Wu, Chongyang Lin, Chaoqing Li, Peizhen Zhang, Kaibo Xu, Lei Liu, Yabo Lu, Junwan Cheng, Cong Bao, Qiyu Hu, Yunliang Lu, Shunfei Li, Jinsong |
author_sort | Chang, Qingli |
collection | PubMed |
description | In order to study the relationship between the structure and function of AmpG, structure, site-specific mutation, and gene complementary experiments have been performed against the clinical isolates of Pseudomonas aeruginosa. We found that there are 51 nucleotide variations at 34 loci over the ampG genes from 24 of 35 P. aeruginosa strains detected, of which 7 nucleotide variations resulted in amino acid change. The ampG variants with the changed nucleotides (amino acids) could complement the function of ampG deleted PA01 (PA01ΔG). The ampicillin minimum inhibitory concentration (MIC) of PA01ΔG complemented with 32 ampG variants was up to 512 μg/ml, similar to the original PA01 (P. aeruginosa PA01). Furthermore, site-directed mutation of two conservative amino acids (I53 and W90) showed that when I53 was mutated to 53S or 53T (I53S or I53T), the ampicillin MIC level dropped drastically, and the activity of AmpC β-lactamase decreased as well. By contrast, the ampicillin MIC and the activity of AmpC β-lactamase remained unchanged for W90R and W90S mutants. Our studies demonstrated that although nucleotide variations occurred in most of the ampG genes, the structure of AmpG protein in clinical isolates is stable, and conservative amino acid is necessary to maintain normal function of AmpG. |
format | Online Article Text |
id | pubmed-6287161 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-62871612018-12-31 The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance Chang, Qingli Wu, Chongyang Lin, Chaoqing Li, Peizhen Zhang, Kaibo Xu, Lei Liu, Yabo Lu, Junwan Cheng, Cong Bao, Qiyu Hu, Yunliang Lu, Shunfei Li, Jinsong Can J Infect Dis Med Microbiol Research Article In order to study the relationship between the structure and function of AmpG, structure, site-specific mutation, and gene complementary experiments have been performed against the clinical isolates of Pseudomonas aeruginosa. We found that there are 51 nucleotide variations at 34 loci over the ampG genes from 24 of 35 P. aeruginosa strains detected, of which 7 nucleotide variations resulted in amino acid change. The ampG variants with the changed nucleotides (amino acids) could complement the function of ampG deleted PA01 (PA01ΔG). The ampicillin minimum inhibitory concentration (MIC) of PA01ΔG complemented with 32 ampG variants was up to 512 μg/ml, similar to the original PA01 (P. aeruginosa PA01). Furthermore, site-directed mutation of two conservative amino acids (I53 and W90) showed that when I53 was mutated to 53S or 53T (I53S or I53T), the ampicillin MIC level dropped drastically, and the activity of AmpC β-lactamase decreased as well. By contrast, the ampicillin MIC and the activity of AmpC β-lactamase remained unchanged for W90R and W90S mutants. Our studies demonstrated that although nucleotide variations occurred in most of the ampG genes, the structure of AmpG protein in clinical isolates is stable, and conservative amino acid is necessary to maintain normal function of AmpG. Hindawi 2018-11-26 /pmc/articles/PMC6287161/ /pubmed/30598711 http://dx.doi.org/10.1155/2018/7170416 Text en Copyright © 2018 Qingli Chang et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Chang, Qingli Wu, Chongyang Lin, Chaoqing Li, Peizhen Zhang, Kaibo Xu, Lei Liu, Yabo Lu, Junwan Cheng, Cong Bao, Qiyu Hu, Yunliang Lu, Shunfei Li, Jinsong The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance |
title | The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance |
title_full | The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance |
title_fullStr | The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance |
title_full_unstemmed | The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance |
title_short | The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance |
title_sort | structure of ampg gene in pseudomonas aeruginosa and its effect on drug resistance |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287161/ https://www.ncbi.nlm.nih.gov/pubmed/30598711 http://dx.doi.org/10.1155/2018/7170416 |
work_keys_str_mv | AT changqingli thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT wuchongyang thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT linchaoqing thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT lipeizhen thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT zhangkaibo thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT xulei thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT liuyabo thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT lujunwan thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT chengcong thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT baoqiyu thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT huyunliang thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT lushunfei thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT lijinsong thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT changqingli structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT wuchongyang structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT linchaoqing structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT lipeizhen structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT zhangkaibo structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT xulei structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT liuyabo structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT lujunwan structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT chengcong structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT baoqiyu structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT huyunliang structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT lushunfei structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance AT lijinsong structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance |