Cargando…

The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance

In order to study the relationship between the structure and function of AmpG, structure, site-specific mutation, and gene complementary experiments have been performed against the clinical isolates of Pseudomonas aeruginosa. We found that there are 51 nucleotide variations at 34 loci over the ampG...

Descripción completa

Detalles Bibliográficos
Autores principales: Chang, Qingli, Wu, Chongyang, Lin, Chaoqing, Li, Peizhen, Zhang, Kaibo, Xu, Lei, Liu, Yabo, Lu, Junwan, Cheng, Cong, Bao, Qiyu, Hu, Yunliang, Lu, Shunfei, Li, Jinsong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287161/
https://www.ncbi.nlm.nih.gov/pubmed/30598711
http://dx.doi.org/10.1155/2018/7170416
_version_ 1783379589133762560
author Chang, Qingli
Wu, Chongyang
Lin, Chaoqing
Li, Peizhen
Zhang, Kaibo
Xu, Lei
Liu, Yabo
Lu, Junwan
Cheng, Cong
Bao, Qiyu
Hu, Yunliang
Lu, Shunfei
Li, Jinsong
author_facet Chang, Qingli
Wu, Chongyang
Lin, Chaoqing
Li, Peizhen
Zhang, Kaibo
Xu, Lei
Liu, Yabo
Lu, Junwan
Cheng, Cong
Bao, Qiyu
Hu, Yunliang
Lu, Shunfei
Li, Jinsong
author_sort Chang, Qingli
collection PubMed
description In order to study the relationship between the structure and function of AmpG, structure, site-specific mutation, and gene complementary experiments have been performed against the clinical isolates of Pseudomonas aeruginosa. We found that there are 51 nucleotide variations at 34 loci over the ampG genes from 24 of 35 P. aeruginosa strains detected, of which 7 nucleotide variations resulted in amino acid change. The ampG variants with the changed nucleotides (amino acids) could complement the function of ampG deleted PA01 (PA01ΔG). The ampicillin minimum inhibitory concentration (MIC) of PA01ΔG complemented with 32 ampG variants was up to 512 μg/ml, similar to the original PA01 (P. aeruginosa PA01). Furthermore, site-directed mutation of two conservative amino acids (I53 and W90) showed that when I53 was mutated to 53S or 53T (I53S or I53T), the ampicillin MIC level dropped drastically, and the activity of AmpC β-lactamase decreased as well. By contrast, the ampicillin MIC and the activity of AmpC β-lactamase remained unchanged for W90R and W90S mutants. Our studies demonstrated that although nucleotide variations occurred in most of the ampG genes, the structure of AmpG protein in clinical isolates is stable, and conservative amino acid is necessary to maintain normal function of AmpG.
format Online
Article
Text
id pubmed-6287161
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Hindawi
record_format MEDLINE/PubMed
spelling pubmed-62871612018-12-31 The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance Chang, Qingli Wu, Chongyang Lin, Chaoqing Li, Peizhen Zhang, Kaibo Xu, Lei Liu, Yabo Lu, Junwan Cheng, Cong Bao, Qiyu Hu, Yunliang Lu, Shunfei Li, Jinsong Can J Infect Dis Med Microbiol Research Article In order to study the relationship between the structure and function of AmpG, structure, site-specific mutation, and gene complementary experiments have been performed against the clinical isolates of Pseudomonas aeruginosa. We found that there are 51 nucleotide variations at 34 loci over the ampG genes from 24 of 35 P. aeruginosa strains detected, of which 7 nucleotide variations resulted in amino acid change. The ampG variants with the changed nucleotides (amino acids) could complement the function of ampG deleted PA01 (PA01ΔG). The ampicillin minimum inhibitory concentration (MIC) of PA01ΔG complemented with 32 ampG variants was up to 512 μg/ml, similar to the original PA01 (P. aeruginosa PA01). Furthermore, site-directed mutation of two conservative amino acids (I53 and W90) showed that when I53 was mutated to 53S or 53T (I53S or I53T), the ampicillin MIC level dropped drastically, and the activity of AmpC β-lactamase decreased as well. By contrast, the ampicillin MIC and the activity of AmpC β-lactamase remained unchanged for W90R and W90S mutants. Our studies demonstrated that although nucleotide variations occurred in most of the ampG genes, the structure of AmpG protein in clinical isolates is stable, and conservative amino acid is necessary to maintain normal function of AmpG. Hindawi 2018-11-26 /pmc/articles/PMC6287161/ /pubmed/30598711 http://dx.doi.org/10.1155/2018/7170416 Text en Copyright © 2018 Qingli Chang et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Article
Chang, Qingli
Wu, Chongyang
Lin, Chaoqing
Li, Peizhen
Zhang, Kaibo
Xu, Lei
Liu, Yabo
Lu, Junwan
Cheng, Cong
Bao, Qiyu
Hu, Yunliang
Lu, Shunfei
Li, Jinsong
The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance
title The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance
title_full The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance
title_fullStr The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance
title_full_unstemmed The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance
title_short The Structure of ampG Gene in Pseudomonas aeruginosa and Its Effect on Drug Resistance
title_sort structure of ampg gene in pseudomonas aeruginosa and its effect on drug resistance
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287161/
https://www.ncbi.nlm.nih.gov/pubmed/30598711
http://dx.doi.org/10.1155/2018/7170416
work_keys_str_mv AT changqingli thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT wuchongyang thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT linchaoqing thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT lipeizhen thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT zhangkaibo thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT xulei thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT liuyabo thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT lujunwan thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT chengcong thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT baoqiyu thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT huyunliang thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT lushunfei thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT lijinsong thestructureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT changqingli structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT wuchongyang structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT linchaoqing structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT lipeizhen structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT zhangkaibo structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT xulei structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT liuyabo structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT lujunwan structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT chengcong structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT baoqiyu structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT huyunliang structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT lushunfei structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance
AT lijinsong structureofampggeneinpseudomonasaeruginosaanditseffectondrugresistance