Cargando…
Dopamine and eye movement control in Parkinson’s disease: deficits in corollary discharge signals?
Movement in Parkinson’s disease (PD) is fragmented, and the patients depend on visual information in their behavior. This suggests that the patients may have deficits in internally monitoring their own movements. Internal monitoring of movements is assumed to rely on corollary discharge signals that...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
PeerJ Inc.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287583/ https://www.ncbi.nlm.nih.gov/pubmed/30568856 http://dx.doi.org/10.7717/peerj.6038 |
_version_ | 1783379668140818432 |
---|---|
author | Railo, Henry Olkoniemi, Henri Eeronheimo, Enni Pääkkönen, Oona Joutsa, Juho Kaasinen, Valtteri |
author_facet | Railo, Henry Olkoniemi, Henri Eeronheimo, Enni Pääkkönen, Oona Joutsa, Juho Kaasinen, Valtteri |
author_sort | Railo, Henry |
collection | PubMed |
description | Movement in Parkinson’s disease (PD) is fragmented, and the patients depend on visual information in their behavior. This suggests that the patients may have deficits in internally monitoring their own movements. Internal monitoring of movements is assumed to rely on corollary discharge signals that enable the brain to predict the sensory consequences of actions. We studied early-stage PD patients (N = 14), and age-matched healthy control participants (N = 14) to examine whether PD patients reveal deficits in updating their sensory representations after eye movements. The participants performed a double-saccade task where, in order to accurately fixate a second target, the participant must correct for the displacement caused by the first saccade. In line with previous reports, the patients had difficulties in fixating the second target when the eye movement was performed without visual guidance. Furthermore, the patients had difficulties in taking into account the error in the first saccade when making a saccade toward the second target, especially when eye movements were made toward the side with dominant motor symptoms. Across PD patients, the impairments in saccadic eye movements correlated with the integrity of the dopaminergic system as measured with [(123)I]FP-CIT SPECT: Patients with lower striatal (caudate, anterior putamen, and posterior putamen) dopamine transporter binding made larger errors in saccades. This effect was strongest when patients made memory-guided saccades toward the second target. Our results provide tentative evidence that the motor deficits in PD may be partly due to deficits in internal monitoring of movements. |
format | Online Article Text |
id | pubmed-6287583 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | PeerJ Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-62875832018-12-19 Dopamine and eye movement control in Parkinson’s disease: deficits in corollary discharge signals? Railo, Henry Olkoniemi, Henri Eeronheimo, Enni Pääkkönen, Oona Joutsa, Juho Kaasinen, Valtteri PeerJ Neuroscience Movement in Parkinson’s disease (PD) is fragmented, and the patients depend on visual information in their behavior. This suggests that the patients may have deficits in internally monitoring their own movements. Internal monitoring of movements is assumed to rely on corollary discharge signals that enable the brain to predict the sensory consequences of actions. We studied early-stage PD patients (N = 14), and age-matched healthy control participants (N = 14) to examine whether PD patients reveal deficits in updating their sensory representations after eye movements. The participants performed a double-saccade task where, in order to accurately fixate a second target, the participant must correct for the displacement caused by the first saccade. In line with previous reports, the patients had difficulties in fixating the second target when the eye movement was performed without visual guidance. Furthermore, the patients had difficulties in taking into account the error in the first saccade when making a saccade toward the second target, especially when eye movements were made toward the side with dominant motor symptoms. Across PD patients, the impairments in saccadic eye movements correlated with the integrity of the dopaminergic system as measured with [(123)I]FP-CIT SPECT: Patients with lower striatal (caudate, anterior putamen, and posterior putamen) dopamine transporter binding made larger errors in saccades. This effect was strongest when patients made memory-guided saccades toward the second target. Our results provide tentative evidence that the motor deficits in PD may be partly due to deficits in internal monitoring of movements. PeerJ Inc. 2018-12-07 /pmc/articles/PMC6287583/ /pubmed/30568856 http://dx.doi.org/10.7717/peerj.6038 Text en © 2018 Railo et al. http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, reproduction and adaptation in any medium and for any purpose provided that it is properly attributed. For attribution, the original author(s), title, publication source (PeerJ) and either DOI or URL of the article must be cited. |
spellingShingle | Neuroscience Railo, Henry Olkoniemi, Henri Eeronheimo, Enni Pääkkönen, Oona Joutsa, Juho Kaasinen, Valtteri Dopamine and eye movement control in Parkinson’s disease: deficits in corollary discharge signals? |
title | Dopamine and eye movement control in Parkinson’s disease: deficits in corollary discharge signals? |
title_full | Dopamine and eye movement control in Parkinson’s disease: deficits in corollary discharge signals? |
title_fullStr | Dopamine and eye movement control in Parkinson’s disease: deficits in corollary discharge signals? |
title_full_unstemmed | Dopamine and eye movement control in Parkinson’s disease: deficits in corollary discharge signals? |
title_short | Dopamine and eye movement control in Parkinson’s disease: deficits in corollary discharge signals? |
title_sort | dopamine and eye movement control in parkinson’s disease: deficits in corollary discharge signals? |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287583/ https://www.ncbi.nlm.nih.gov/pubmed/30568856 http://dx.doi.org/10.7717/peerj.6038 |
work_keys_str_mv | AT railohenry dopamineandeyemovementcontrolinparkinsonsdiseasedeficitsincorollarydischargesignals AT olkoniemihenri dopamineandeyemovementcontrolinparkinsonsdiseasedeficitsincorollarydischargesignals AT eeronheimoenni dopamineandeyemovementcontrolinparkinsonsdiseasedeficitsincorollarydischargesignals AT paakkonenoona dopamineandeyemovementcontrolinparkinsonsdiseasedeficitsincorollarydischargesignals AT joutsajuho dopamineandeyemovementcontrolinparkinsonsdiseasedeficitsincorollarydischargesignals AT kaasinenvaltteri dopamineandeyemovementcontrolinparkinsonsdiseasedeficitsincorollarydischargesignals |