Cargando…
Molecular machinery of auxin synthesis, secretion, and perception in the unicellular chlorophyte alga Chlorella sorokiniana UTEX 1230
Indole-3-acetic acid is a ubiquitous small molecule found in all domains of life. It is the predominant and most active auxin in seed plants, where it coordinates a variety of complex growth and development processes. The potential origin of auxin signaling in algae remains a matter of some controve...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287815/ https://www.ncbi.nlm.nih.gov/pubmed/30532131 http://dx.doi.org/10.1371/journal.pone.0205227 |
_version_ | 1783379688776794112 |
---|---|
author | Khasin, Maya Cahoon, Rebecca R. Nickerson, Kenneth W. Riekhof, Wayne R. |
author_facet | Khasin, Maya Cahoon, Rebecca R. Nickerson, Kenneth W. Riekhof, Wayne R. |
author_sort | Khasin, Maya |
collection | PubMed |
description | Indole-3-acetic acid is a ubiquitous small molecule found in all domains of life. It is the predominant and most active auxin in seed plants, where it coordinates a variety of complex growth and development processes. The potential origin of auxin signaling in algae remains a matter of some controversy. In order to clarify the evolutionary context of algal auxin signaling, we undertook a genomic survey to assess whether auxin acts as a signaling molecule in the emerging model chlorophyte Chlorella sorokiniana UTEX 1230. C. sorokiniana produces the auxin indole-3-acetic acid (IAA), which was present in both the cell pellet and in the supernatant at a concentration of ~ 1 nM, and its genome encodes orthologs of genes related to auxin synthesis, transport, and signaling in higher plants. Candidate orthologs for the canonical AUX/IAA signaling pathway were not found; however, auxin-binding protein 1 (ABP1), an alternate auxin receptor, is present and highly conserved at essential auxin binding and zinc coordinating residues. Additionally, candidate orthologs for PIN proteins, responsible for intercellular, vectorial auxin transport in higher plants, were not found, but PILs (PIN-Like) proteins, a recently discovered family that mediates intracellular auxin transport, were identified. The distribution of auxin related gene in this unicellular chlorophyte demonstrates that a core suite of auxin signaling components was present early in the evolution of plants. Understanding the simplified auxin signaling pathways in chlorophytes will aid in understanding phytohormone signaling and crosstalk in seed plants, and in understanding the diversification and integration of developmental signals during the evolution of multicellular plants. |
format | Online Article Text |
id | pubmed-6287815 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62878152018-12-28 Molecular machinery of auxin synthesis, secretion, and perception in the unicellular chlorophyte alga Chlorella sorokiniana UTEX 1230 Khasin, Maya Cahoon, Rebecca R. Nickerson, Kenneth W. Riekhof, Wayne R. PLoS One Research Article Indole-3-acetic acid is a ubiquitous small molecule found in all domains of life. It is the predominant and most active auxin in seed plants, where it coordinates a variety of complex growth and development processes. The potential origin of auxin signaling in algae remains a matter of some controversy. In order to clarify the evolutionary context of algal auxin signaling, we undertook a genomic survey to assess whether auxin acts as a signaling molecule in the emerging model chlorophyte Chlorella sorokiniana UTEX 1230. C. sorokiniana produces the auxin indole-3-acetic acid (IAA), which was present in both the cell pellet and in the supernatant at a concentration of ~ 1 nM, and its genome encodes orthologs of genes related to auxin synthesis, transport, and signaling in higher plants. Candidate orthologs for the canonical AUX/IAA signaling pathway were not found; however, auxin-binding protein 1 (ABP1), an alternate auxin receptor, is present and highly conserved at essential auxin binding and zinc coordinating residues. Additionally, candidate orthologs for PIN proteins, responsible for intercellular, vectorial auxin transport in higher plants, were not found, but PILs (PIN-Like) proteins, a recently discovered family that mediates intracellular auxin transport, were identified. The distribution of auxin related gene in this unicellular chlorophyte demonstrates that a core suite of auxin signaling components was present early in the evolution of plants. Understanding the simplified auxin signaling pathways in chlorophytes will aid in understanding phytohormone signaling and crosstalk in seed plants, and in understanding the diversification and integration of developmental signals during the evolution of multicellular plants. Public Library of Science 2018-12-10 /pmc/articles/PMC6287815/ /pubmed/30532131 http://dx.doi.org/10.1371/journal.pone.0205227 Text en © 2018 Khasin et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Khasin, Maya Cahoon, Rebecca R. Nickerson, Kenneth W. Riekhof, Wayne R. Molecular machinery of auxin synthesis, secretion, and perception in the unicellular chlorophyte alga Chlorella sorokiniana UTEX 1230 |
title | Molecular machinery of auxin synthesis, secretion, and perception in the unicellular chlorophyte alga Chlorella sorokiniana UTEX 1230 |
title_full | Molecular machinery of auxin synthesis, secretion, and perception in the unicellular chlorophyte alga Chlorella sorokiniana UTEX 1230 |
title_fullStr | Molecular machinery of auxin synthesis, secretion, and perception in the unicellular chlorophyte alga Chlorella sorokiniana UTEX 1230 |
title_full_unstemmed | Molecular machinery of auxin synthesis, secretion, and perception in the unicellular chlorophyte alga Chlorella sorokiniana UTEX 1230 |
title_short | Molecular machinery of auxin synthesis, secretion, and perception in the unicellular chlorophyte alga Chlorella sorokiniana UTEX 1230 |
title_sort | molecular machinery of auxin synthesis, secretion, and perception in the unicellular chlorophyte alga chlorella sorokiniana utex 1230 |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6287815/ https://www.ncbi.nlm.nih.gov/pubmed/30532131 http://dx.doi.org/10.1371/journal.pone.0205227 |
work_keys_str_mv | AT khasinmaya molecularmachineryofauxinsynthesissecretionandperceptionintheunicellularchlorophytealgachlorellasorokinianautex1230 AT cahoonrebeccar molecularmachineryofauxinsynthesissecretionandperceptionintheunicellularchlorophytealgachlorellasorokinianautex1230 AT nickersonkennethw molecularmachineryofauxinsynthesissecretionandperceptionintheunicellularchlorophytealgachlorellasorokinianautex1230 AT riekhofwayner molecularmachineryofauxinsynthesissecretionandperceptionintheunicellularchlorophytealgachlorellasorokinianautex1230 |