Cargando…
Modeling genome-wide enzyme evolution predicts strong epistasis underlying catalytic turnover rates
Systems biology describes cellular phenotypes as properties that emerge from the complex interactions of individual system components. Little is known about how these interactions have affected the evolution of metabolic enzymes. Here, we combine genome-scale metabolic modeling with population genet...
Autores principales: | Heckmann, David, Zielinski, Daniel C., Palsson, Bernhard O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288127/ https://www.ncbi.nlm.nih.gov/pubmed/30532008 http://dx.doi.org/10.1038/s41467-018-07649-1 |
Ejemplares similares
-
Machine learning applied to enzyme turnover numbers reveals protein structural correlates and improves metabolic models
por: Heckmann, David, et al.
Publicado: (2018) -
Epistasis Analysis Goes Genome-Wide
por: Zhang, Jianzhi
Publicado: (2017) -
A Two-Locus System with Strong Epistasis Underlies Rapid Parasite-Mediated Evolution of Host Resistance
por: Ameline, Camille, et al.
Publicado: (2020) -
Kinetic profiling of metabolic specialists demonstrates stability and consistency of in vivo enzyme turnover numbers
por: Heckmann, David, et al.
Publicado: (2020) -
Highly expressed genes evolve under strong epistasis from a proteome-wide scan in E. coli
por: Dasmeh, Pouria, et al.
Publicado: (2017)