Cargando…

Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements

Caloric restriction (CR) stimulates development of functional beige fat and extends healthy lifespan. Here we show that compositional and functional changes in the gut microbiota contribute to a number of CR-induced metabolic improvements and promote fat browning. Mechanistically, these effects are...

Descripción completa

Detalles Bibliográficos
Autores principales: Fabbiano, Salvatore, Suárez-Zamorano, Nicolas, Chevalier, Claire, Lazarević, Vladimir, Kieser, Silas, Rigo, Dorothée, Leo, Stefano, Veyrat-Durebex, Christelle, Gaïa, Nadia, Maresca, Marcello, Merkler, Doron, Gomez de Agüero, Mercedes, Macpherson, Andrew, Schrenzel, Jacques, Trajkovski, Mirko
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288182/
https://www.ncbi.nlm.nih.gov/pubmed/30174308
http://dx.doi.org/10.1016/j.cmet.2018.08.005
_version_ 1783379749518704640
author Fabbiano, Salvatore
Suárez-Zamorano, Nicolas
Chevalier, Claire
Lazarević, Vladimir
Kieser, Silas
Rigo, Dorothée
Leo, Stefano
Veyrat-Durebex, Christelle
Gaïa, Nadia
Maresca, Marcello
Merkler, Doron
Gomez de Agüero, Mercedes
Macpherson, Andrew
Schrenzel, Jacques
Trajkovski, Mirko
author_facet Fabbiano, Salvatore
Suárez-Zamorano, Nicolas
Chevalier, Claire
Lazarević, Vladimir
Kieser, Silas
Rigo, Dorothée
Leo, Stefano
Veyrat-Durebex, Christelle
Gaïa, Nadia
Maresca, Marcello
Merkler, Doron
Gomez de Agüero, Mercedes
Macpherson, Andrew
Schrenzel, Jacques
Trajkovski, Mirko
author_sort Fabbiano, Salvatore
collection PubMed
description Caloric restriction (CR) stimulates development of functional beige fat and extends healthy lifespan. Here we show that compositional and functional changes in the gut microbiota contribute to a number of CR-induced metabolic improvements and promote fat browning. Mechanistically, these effects are linked to a lower expression of the key bacterial enzymes necessary for the lipid A biosynthesis, a critical lipopolysaccharide (LPS) building component. The decreased LPS dictates the tone of the innate immune response during CR, leading to increased eosinophil infiltration and anti-inflammatory macrophage polarization in fat of the CR animals. Genetic and pharmacological suppression of the LPS-TLR4 pathway or transplantation with Tlr4(−/−) bone-marrow-derived hematopoietic cells increases beige fat development and ameliorates diet-induced fatty liver, while Tlr4(−/−) or microbiota-depleted mice are resistant to further CR-stimulated metabolic alterations. These data reveal signals critical for our understanding of the microbiota-fat signaling axis during CR and provide potential new anti-obesity therapeutics.
format Online
Article
Text
id pubmed-6288182
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-62881822018-12-19 Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements Fabbiano, Salvatore Suárez-Zamorano, Nicolas Chevalier, Claire Lazarević, Vladimir Kieser, Silas Rigo, Dorothée Leo, Stefano Veyrat-Durebex, Christelle Gaïa, Nadia Maresca, Marcello Merkler, Doron Gomez de Agüero, Mercedes Macpherson, Andrew Schrenzel, Jacques Trajkovski, Mirko Cell Metab Article Caloric restriction (CR) stimulates development of functional beige fat and extends healthy lifespan. Here we show that compositional and functional changes in the gut microbiota contribute to a number of CR-induced metabolic improvements and promote fat browning. Mechanistically, these effects are linked to a lower expression of the key bacterial enzymes necessary for the lipid A biosynthesis, a critical lipopolysaccharide (LPS) building component. The decreased LPS dictates the tone of the innate immune response during CR, leading to increased eosinophil infiltration and anti-inflammatory macrophage polarization in fat of the CR animals. Genetic and pharmacological suppression of the LPS-TLR4 pathway or transplantation with Tlr4(−/−) bone-marrow-derived hematopoietic cells increases beige fat development and ameliorates diet-induced fatty liver, while Tlr4(−/−) or microbiota-depleted mice are resistant to further CR-stimulated metabolic alterations. These data reveal signals critical for our understanding of the microbiota-fat signaling axis during CR and provide potential new anti-obesity therapeutics. Cell Press 2018-12-04 /pmc/articles/PMC6288182/ /pubmed/30174308 http://dx.doi.org/10.1016/j.cmet.2018.08.005 Text en © 2018 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Article
Fabbiano, Salvatore
Suárez-Zamorano, Nicolas
Chevalier, Claire
Lazarević, Vladimir
Kieser, Silas
Rigo, Dorothée
Leo, Stefano
Veyrat-Durebex, Christelle
Gaïa, Nadia
Maresca, Marcello
Merkler, Doron
Gomez de Agüero, Mercedes
Macpherson, Andrew
Schrenzel, Jacques
Trajkovski, Mirko
Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements
title Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements
title_full Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements
title_fullStr Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements
title_full_unstemmed Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements
title_short Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements
title_sort functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288182/
https://www.ncbi.nlm.nih.gov/pubmed/30174308
http://dx.doi.org/10.1016/j.cmet.2018.08.005
work_keys_str_mv AT fabbianosalvatore functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements
AT suarezzamoranonicolas functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements
AT chevalierclaire functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements
AT lazarevicvladimir functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements
AT kiesersilas functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements
AT rigodorothee functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements
AT leostefano functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements
AT veyratdurebexchristelle functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements
AT gaianadia functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements
AT marescamarcello functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements
AT merklerdoron functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements
AT gomezdeagueromercedes functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements
AT macphersonandrew functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements
AT schrenzeljacques functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements
AT trajkovskimirko functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements