Cargando…
Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements
Caloric restriction (CR) stimulates development of functional beige fat and extends healthy lifespan. Here we show that compositional and functional changes in the gut microbiota contribute to a number of CR-induced metabolic improvements and promote fat browning. Mechanistically, these effects are...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288182/ https://www.ncbi.nlm.nih.gov/pubmed/30174308 http://dx.doi.org/10.1016/j.cmet.2018.08.005 |
_version_ | 1783379749518704640 |
---|---|
author | Fabbiano, Salvatore Suárez-Zamorano, Nicolas Chevalier, Claire Lazarević, Vladimir Kieser, Silas Rigo, Dorothée Leo, Stefano Veyrat-Durebex, Christelle Gaïa, Nadia Maresca, Marcello Merkler, Doron Gomez de Agüero, Mercedes Macpherson, Andrew Schrenzel, Jacques Trajkovski, Mirko |
author_facet | Fabbiano, Salvatore Suárez-Zamorano, Nicolas Chevalier, Claire Lazarević, Vladimir Kieser, Silas Rigo, Dorothée Leo, Stefano Veyrat-Durebex, Christelle Gaïa, Nadia Maresca, Marcello Merkler, Doron Gomez de Agüero, Mercedes Macpherson, Andrew Schrenzel, Jacques Trajkovski, Mirko |
author_sort | Fabbiano, Salvatore |
collection | PubMed |
description | Caloric restriction (CR) stimulates development of functional beige fat and extends healthy lifespan. Here we show that compositional and functional changes in the gut microbiota contribute to a number of CR-induced metabolic improvements and promote fat browning. Mechanistically, these effects are linked to a lower expression of the key bacterial enzymes necessary for the lipid A biosynthesis, a critical lipopolysaccharide (LPS) building component. The decreased LPS dictates the tone of the innate immune response during CR, leading to increased eosinophil infiltration and anti-inflammatory macrophage polarization in fat of the CR animals. Genetic and pharmacological suppression of the LPS-TLR4 pathway or transplantation with Tlr4(−/−) bone-marrow-derived hematopoietic cells increases beige fat development and ameliorates diet-induced fatty liver, while Tlr4(−/−) or microbiota-depleted mice are resistant to further CR-stimulated metabolic alterations. These data reveal signals critical for our understanding of the microbiota-fat signaling axis during CR and provide potential new anti-obesity therapeutics. |
format | Online Article Text |
id | pubmed-6288182 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-62881822018-12-19 Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements Fabbiano, Salvatore Suárez-Zamorano, Nicolas Chevalier, Claire Lazarević, Vladimir Kieser, Silas Rigo, Dorothée Leo, Stefano Veyrat-Durebex, Christelle Gaïa, Nadia Maresca, Marcello Merkler, Doron Gomez de Agüero, Mercedes Macpherson, Andrew Schrenzel, Jacques Trajkovski, Mirko Cell Metab Article Caloric restriction (CR) stimulates development of functional beige fat and extends healthy lifespan. Here we show that compositional and functional changes in the gut microbiota contribute to a number of CR-induced metabolic improvements and promote fat browning. Mechanistically, these effects are linked to a lower expression of the key bacterial enzymes necessary for the lipid A biosynthesis, a critical lipopolysaccharide (LPS) building component. The decreased LPS dictates the tone of the innate immune response during CR, leading to increased eosinophil infiltration and anti-inflammatory macrophage polarization in fat of the CR animals. Genetic and pharmacological suppression of the LPS-TLR4 pathway or transplantation with Tlr4(−/−) bone-marrow-derived hematopoietic cells increases beige fat development and ameliorates diet-induced fatty liver, while Tlr4(−/−) or microbiota-depleted mice are resistant to further CR-stimulated metabolic alterations. These data reveal signals critical for our understanding of the microbiota-fat signaling axis during CR and provide potential new anti-obesity therapeutics. Cell Press 2018-12-04 /pmc/articles/PMC6288182/ /pubmed/30174308 http://dx.doi.org/10.1016/j.cmet.2018.08.005 Text en © 2018 The Author(s) http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Fabbiano, Salvatore Suárez-Zamorano, Nicolas Chevalier, Claire Lazarević, Vladimir Kieser, Silas Rigo, Dorothée Leo, Stefano Veyrat-Durebex, Christelle Gaïa, Nadia Maresca, Marcello Merkler, Doron Gomez de Agüero, Mercedes Macpherson, Andrew Schrenzel, Jacques Trajkovski, Mirko Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements |
title | Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements |
title_full | Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements |
title_fullStr | Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements |
title_full_unstemmed | Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements |
title_short | Functional Gut Microbiota Remodeling Contributes to the Caloric Restriction-Induced Metabolic Improvements |
title_sort | functional gut microbiota remodeling contributes to the caloric restriction-induced metabolic improvements |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288182/ https://www.ncbi.nlm.nih.gov/pubmed/30174308 http://dx.doi.org/10.1016/j.cmet.2018.08.005 |
work_keys_str_mv | AT fabbianosalvatore functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements AT suarezzamoranonicolas functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements AT chevalierclaire functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements AT lazarevicvladimir functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements AT kiesersilas functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements AT rigodorothee functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements AT leostefano functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements AT veyratdurebexchristelle functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements AT gaianadia functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements AT marescamarcello functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements AT merklerdoron functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements AT gomezdeagueromercedes functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements AT macphersonandrew functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements AT schrenzeljacques functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements AT trajkovskimirko functionalgutmicrobiotaremodelingcontributestothecaloricrestrictioninducedmetabolicimprovements |