Cargando…
Methodology to develop machine learning algorithms to improve performance in gastrointestinal endoscopy
Assisted diagnosis using artificial intelligence has been a holy grail in medical research for many years, and recent developments in computer hardware have enabled the narrower area of machine learning to equip clinicians with potentially useful tools for computer assisted diagnosis (CAD) systems....
Autores principales: | de Lange, Thomas, Halvorsen, Pål, Riegler, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288655/ https://www.ncbi.nlm.nih.gov/pubmed/30568383 http://dx.doi.org/10.3748/wjg.v24.i45.5057 |
Ejemplares similares
-
Impact of Image Resolution on Deep Learning Performance in Endoscopy Image Classification: An Experimental Study Using a Large Dataset of Endoscopic Images
por: Thambawita, Vajira, et al.
Publicado: (2021) -
HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy
por: Borgli, Hanna, et al.
Publicado: (2020) -
Anesthesia for gastrointestinal endoscopy: A subspecialty in evolution?
por: Goudra, Basavana, et al.
Publicado: (2015) -
Preparation of image databases for artificial intelligence algorithm development in gastrointestinal endoscopy
por: Yang, Chang Bong, et al.
Publicado: (2022) -
Special Issue “The Next Generation of Upper Gastrointestinal Endoscopy”
por: Kurumi, Hiroki, et al.
Publicado: (2022)