Cargando…
Polymer-Bound 4-Pyridyl-5-hydroxyethyl-thiazole Fluorescent Chemosensors for the Detection of Organophosphate Nerve Agent Simulants
[Image: see text] Fluorescent sensors have been synthesized for organophosphate nerve agent detection. The resulting 4-pyridyl-5-hydroxyethyl structures react with organophosphate nerve agent simulants such as diethylchlorophosphate and diisopropylfluorophosphate and cyclize to form a dihydroquinoli...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288808/ https://www.ncbi.nlm.nih.gov/pubmed/30556023 http://dx.doi.org/10.1021/acsomega.8b02313 |
Sumario: | [Image: see text] Fluorescent sensors have been synthesized for organophosphate nerve agent detection. The resulting 4-pyridyl-5-hydroxyethyl structures react with organophosphate nerve agent simulants such as diethylchlorophosphate and diisopropylfluorophosphate and cyclize to form a dihydroquinolizinium ring that results in an increased fluorescence response to long-wave UV excitation. These sensors have been functionalized with monomeric substitutions that allow for covalent incorporation into a polymer matrix for organophosphate detection to develop a fieldable sensor. In addition, inclusion of silicon dioxide into the polymer matrix eliminated false-positive responses from mineral acids, greatly advancing this class of sensors. |
---|