Cargando…

QTL Mapping on a Background of Variance Heterogeneity

Standard QTL mapping procedures seek to identify genetic loci affecting the phenotypic mean while assuming that all individuals have the same residual variance. But when the residual variance differs systematically between groups, perhaps due to a genetic or environmental factor, such standard proce...

Descripción completa

Detalles Bibliográficos
Autores principales: Corty, Robert W., Valdar, William
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Genetics Society of America 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288843/
https://www.ncbi.nlm.nih.gov/pubmed/30389794
http://dx.doi.org/10.1534/g3.118.200790
_version_ 1783379868223799296
author Corty, Robert W.
Valdar, William
author_facet Corty, Robert W.
Valdar, William
author_sort Corty, Robert W.
collection PubMed
description Standard QTL mapping procedures seek to identify genetic loci affecting the phenotypic mean while assuming that all individuals have the same residual variance. But when the residual variance differs systematically between groups, perhaps due to a genetic or environmental factor, such standard procedures can falter: in testing for QTL associations, they attribute too much weight to observations that are noisy and too little to those that are precise, resulting in reduced power and and increased susceptibility to false positives. The negative effects of such “background variance heterogeneity” (BVH) on standard QTL mapping have received little attention until now, although the subject is closely related to work on the detection of variance-controlling genes. Here we use simulation to examine how BVH affects power and false positive rate for detecting QTL affecting the mean (mQTL), the variance (vQTL), or both (mvQTL). We compare linear regression for mQTL and Levene’s test for vQTL, with tests more recently developed, including tests based on the double generalized linear model (DGLM), which can model BVH explicitly. We show that, when used in conjunction with a suitable permutation procedure, the DGLM-based tests accurately control false positive rate and are more powerful than the other tests. We also find that some adverse effects of BVH can be mitigated by applying a rank inverse normal transform. We apply our novel approach, which we term “mean-variance QTL mapping”, to publicly available data on a mouse backcross and, after accommodating BVH driven by sire, detect a new mQTL for bodyweight.
format Online
Article
Text
id pubmed-6288843
institution National Center for Biotechnology Information
language English
publishDate 2018
publisher Genetics Society of America
record_format MEDLINE/PubMed
spelling pubmed-62888432018-12-19 QTL Mapping on a Background of Variance Heterogeneity Corty, Robert W. Valdar, William G3 (Bethesda) Investigations Standard QTL mapping procedures seek to identify genetic loci affecting the phenotypic mean while assuming that all individuals have the same residual variance. But when the residual variance differs systematically between groups, perhaps due to a genetic or environmental factor, such standard procedures can falter: in testing for QTL associations, they attribute too much weight to observations that are noisy and too little to those that are precise, resulting in reduced power and and increased susceptibility to false positives. The negative effects of such “background variance heterogeneity” (BVH) on standard QTL mapping have received little attention until now, although the subject is closely related to work on the detection of variance-controlling genes. Here we use simulation to examine how BVH affects power and false positive rate for detecting QTL affecting the mean (mQTL), the variance (vQTL), or both (mvQTL). We compare linear regression for mQTL and Levene’s test for vQTL, with tests more recently developed, including tests based on the double generalized linear model (DGLM), which can model BVH explicitly. We show that, when used in conjunction with a suitable permutation procedure, the DGLM-based tests accurately control false positive rate and are more powerful than the other tests. We also find that some adverse effects of BVH can be mitigated by applying a rank inverse normal transform. We apply our novel approach, which we term “mean-variance QTL mapping”, to publicly available data on a mouse backcross and, after accommodating BVH driven by sire, detect a new mQTL for bodyweight. Genetics Society of America 2018-11-13 /pmc/articles/PMC6288843/ /pubmed/30389794 http://dx.doi.org/10.1534/g3.118.200790 Text en Copyright © 2018 Corty, Valdar http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Investigations
Corty, Robert W.
Valdar, William
QTL Mapping on a Background of Variance Heterogeneity
title QTL Mapping on a Background of Variance Heterogeneity
title_full QTL Mapping on a Background of Variance Heterogeneity
title_fullStr QTL Mapping on a Background of Variance Heterogeneity
title_full_unstemmed QTL Mapping on a Background of Variance Heterogeneity
title_short QTL Mapping on a Background of Variance Heterogeneity
title_sort qtl mapping on a background of variance heterogeneity
topic Investigations
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288843/
https://www.ncbi.nlm.nih.gov/pubmed/30389794
http://dx.doi.org/10.1534/g3.118.200790
work_keys_str_mv AT cortyrobertw qtlmappingonabackgroundofvarianceheterogeneity
AT valdarwilliam qtlmappingonabackgroundofvarianceheterogeneity