Cargando…
Using Kinect to classify Parkinson’s disease stages related to severity of gait impairment
BACKGROUND: Parkinson’s Disease (PD) is a chronic neurodegenerative disease associated with motor problems such as gait impairment. Different systems based on 3D cameras, accelerometers or gyroscopes have been used in related works in order to study gait disturbances in PD. Kinect (Ⓡ) has also been...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288944/ https://www.ncbi.nlm.nih.gov/pubmed/30526473 http://dx.doi.org/10.1186/s12859-018-2488-4 |
_version_ | 1783379892020183040 |
---|---|
author | Dranca, Lacramioara de Abetxuko Ruiz de Mendarozketa, Lopez Goñi, Alfredo Illarramendi, Arantza Navalpotro Gomez, Irene Delgado Alvarado, Manuel Cruz Rodríguez-Oroz, María |
author_facet | Dranca, Lacramioara de Abetxuko Ruiz de Mendarozketa, Lopez Goñi, Alfredo Illarramendi, Arantza Navalpotro Gomez, Irene Delgado Alvarado, Manuel Cruz Rodríguez-Oroz, María |
author_sort | Dranca, Lacramioara |
collection | PubMed |
description | BACKGROUND: Parkinson’s Disease (PD) is a chronic neurodegenerative disease associated with motor problems such as gait impairment. Different systems based on 3D cameras, accelerometers or gyroscopes have been used in related works in order to study gait disturbances in PD. Kinect (Ⓡ) has also been used to build these kinds of systems, but contradictory results have been reported: some works conclude that Kinect does not provide an accurate method of measuring gait kinematics variables, but others, on the contrary, report good accuracy results. METHODS: In this work, we have built a Kinect-based system that can distinguish between different PD stages, and have performed a clinical study with 30 patients suffering from PD belonging to three groups: early PD patients without axial impairment, more evolved PD patients with higher gait impairment but without Freezing of Gait (FoG), and patients with advanced PD and FoG. Those patients were recorded by two Kinect devices when they were walking in a hospital corridor. The datasets obtained from the Kinect were preprocessed, 115 features identified, some methods were applied to select the relevant features (correlation based feature selection, information gain, and consistency subset evaluation), and different classification methods (decision trees, Bayesian networks, neural networks and K-nearest neighbours classifiers) were evaluated with the goal of finding the most accurate method for PD stage classification. RESULTS: The classifier that provided the best results is a particular case of a Bayesian Network classifier (similar to a Naïve Bayesian classifier) built from a set of 7 relevant features selected by the correlation-based on feature selection method. The accuracy obtained for that classifier using 10-fold cross validation is 93.40%. The relevant features are related to left shin angles, left humerus angles, frontal and lateral bents, left forearm angles and the number of steps during spin. CONCLUSIONS: In this paper, it is shown that using Kinect is adequate to build a inexpensive and comfortable system that classifies PD into three different stages related to FoG. Compared to the results of previous works, the obtained accuracy (93.40%) can be considered high. The relevant features for the classifier are: a) movement and position of the left arm, b) trunk position for slightly displaced walking sequences, and c) left shin angle, for straight walking sequences. However, we have obtained a better accuracy (96.23%) for a classifier that only uses features extracted from slightly displaced walking steps and spin walking steps. Finally, the obtained set of relevant features may lead to new rehabilitation therapies for PD patients with gait problems. |
format | Online Article Text |
id | pubmed-6288944 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-62889442018-12-14 Using Kinect to classify Parkinson’s disease stages related to severity of gait impairment Dranca, Lacramioara de Abetxuko Ruiz de Mendarozketa, Lopez Goñi, Alfredo Illarramendi, Arantza Navalpotro Gomez, Irene Delgado Alvarado, Manuel Cruz Rodríguez-Oroz, María BMC Bioinformatics Research Article BACKGROUND: Parkinson’s Disease (PD) is a chronic neurodegenerative disease associated with motor problems such as gait impairment. Different systems based on 3D cameras, accelerometers or gyroscopes have been used in related works in order to study gait disturbances in PD. Kinect (Ⓡ) has also been used to build these kinds of systems, but contradictory results have been reported: some works conclude that Kinect does not provide an accurate method of measuring gait kinematics variables, but others, on the contrary, report good accuracy results. METHODS: In this work, we have built a Kinect-based system that can distinguish between different PD stages, and have performed a clinical study with 30 patients suffering from PD belonging to three groups: early PD patients without axial impairment, more evolved PD patients with higher gait impairment but without Freezing of Gait (FoG), and patients with advanced PD and FoG. Those patients were recorded by two Kinect devices when they were walking in a hospital corridor. The datasets obtained from the Kinect were preprocessed, 115 features identified, some methods were applied to select the relevant features (correlation based feature selection, information gain, and consistency subset evaluation), and different classification methods (decision trees, Bayesian networks, neural networks and K-nearest neighbours classifiers) were evaluated with the goal of finding the most accurate method for PD stage classification. RESULTS: The classifier that provided the best results is a particular case of a Bayesian Network classifier (similar to a Naïve Bayesian classifier) built from a set of 7 relevant features selected by the correlation-based on feature selection method. The accuracy obtained for that classifier using 10-fold cross validation is 93.40%. The relevant features are related to left shin angles, left humerus angles, frontal and lateral bents, left forearm angles and the number of steps during spin. CONCLUSIONS: In this paper, it is shown that using Kinect is adequate to build a inexpensive and comfortable system that classifies PD into three different stages related to FoG. Compared to the results of previous works, the obtained accuracy (93.40%) can be considered high. The relevant features for the classifier are: a) movement and position of the left arm, b) trunk position for slightly displaced walking sequences, and c) left shin angle, for straight walking sequences. However, we have obtained a better accuracy (96.23%) for a classifier that only uses features extracted from slightly displaced walking steps and spin walking steps. Finally, the obtained set of relevant features may lead to new rehabilitation therapies for PD patients with gait problems. BioMed Central 2018-12-10 /pmc/articles/PMC6288944/ /pubmed/30526473 http://dx.doi.org/10.1186/s12859-018-2488-4 Text en © The Author(s) 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Article Dranca, Lacramioara de Abetxuko Ruiz de Mendarozketa, Lopez Goñi, Alfredo Illarramendi, Arantza Navalpotro Gomez, Irene Delgado Alvarado, Manuel Cruz Rodríguez-Oroz, María Using Kinect to classify Parkinson’s disease stages related to severity of gait impairment |
title | Using Kinect to classify Parkinson’s disease stages related to severity of gait impairment |
title_full | Using Kinect to classify Parkinson’s disease stages related to severity of gait impairment |
title_fullStr | Using Kinect to classify Parkinson’s disease stages related to severity of gait impairment |
title_full_unstemmed | Using Kinect to classify Parkinson’s disease stages related to severity of gait impairment |
title_short | Using Kinect to classify Parkinson’s disease stages related to severity of gait impairment |
title_sort | using kinect to classify parkinson’s disease stages related to severity of gait impairment |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6288944/ https://www.ncbi.nlm.nih.gov/pubmed/30526473 http://dx.doi.org/10.1186/s12859-018-2488-4 |
work_keys_str_mv | AT drancalacramioara usingkinecttoclassifyparkinsonsdiseasestagesrelatedtoseverityofgaitimpairment AT deabetxukoruizdemendarozketalopez usingkinecttoclassifyparkinsonsdiseasestagesrelatedtoseverityofgaitimpairment AT gonialfredo usingkinecttoclassifyparkinsonsdiseasestagesrelatedtoseverityofgaitimpairment AT illarramendiarantza usingkinecttoclassifyparkinsonsdiseasestagesrelatedtoseverityofgaitimpairment AT navalpotrogomezirene usingkinecttoclassifyparkinsonsdiseasestagesrelatedtoseverityofgaitimpairment AT delgadoalvaradomanuel usingkinecttoclassifyparkinsonsdiseasestagesrelatedtoseverityofgaitimpairment AT cruzrodriguezorozmaria usingkinecttoclassifyparkinsonsdiseasestagesrelatedtoseverityofgaitimpairment |