Cargando…
Direct introduction of nitrogen and oxygen functionality with spatial control using copper catalysis
Synthetic chemists have spent considerable effort optimizing the synthesis of nitrogen and oxygen containing compounds through a number of methods; however, direct introduction of N- and O-functionality remains challenging. Presented herein is a general method to allow for the simultaneous installat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289103/ https://www.ncbi.nlm.nih.gov/pubmed/30627395 http://dx.doi.org/10.1039/c8sc03288b |
Sumario: | Synthetic chemists have spent considerable effort optimizing the synthesis of nitrogen and oxygen containing compounds through a number of methods; however, direct introduction of N- and O-functionality remains challenging. Presented herein is a general method to allow for the simultaneous installation of N- and O-functionality to construct unexplored N–O heterocyclic and amino-alcohol scaffolds. This transformation uses earth abundant copper salts to facilitate the formation of a carbon-centered radical and subsequent carbon–nitrogen bond formation. The intermediate aminoxyl radical is terminated by an intramolecularly appended carbon-centered radical. We have exploited this methodology to also access amino-alcohols with a range of aliphatic and aromatic linkers. |
---|