Cargando…
Outlier analyses of the Protein Data Bank archive using a probability-density-ranking approach
Outlier analyses are central to scientific data assessments. Conventional outlier identification methods do not work effectively for Protein Data Bank (PDB) data, which are characterized by heavy skewness and the presence of bounds and/or long tails. We have developed a data-driven nonparametric met...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289109/ https://www.ncbi.nlm.nih.gov/pubmed/30532050 http://dx.doi.org/10.1038/sdata.2018.293 |
Sumario: | Outlier analyses are central to scientific data assessments. Conventional outlier identification methods do not work effectively for Protein Data Bank (PDB) data, which are characterized by heavy skewness and the presence of bounds and/or long tails. We have developed a data-driven nonparametric method to identify outliers in PDB data based on kernel probability density estimation. Unlike conventional outlier analyses based on location and scale, Probability Density Ranking can be used for robust assessments of distance from other observations. Analyzing PDB data from the vantage points of probability and frequency enables proper outlier identification, which is important for quality control during deposition-validation-biocuration of new three-dimensional structure data. Ranking of Probability Density also permits use of Most Probable Range as a robust measure of data dispersion that is more compact than Interquartile Range. The Probability-Density-Ranking approach can be employed to analyze outliers and data-spread on any large data set with continuous distribution. |
---|