Cargando…
Outlier analyses of the Protein Data Bank archive using a probability-density-ranking approach
Outlier analyses are central to scientific data assessments. Conventional outlier identification methods do not work effectively for Protein Data Bank (PDB) data, which are characterized by heavy skewness and the presence of bounds and/or long tails. We have developed a data-driven nonparametric met...
Autores principales: | Shao, Chenghua, Liu, Zonghong, Yang, Huanwang, Wang, Sijian, Burley, Stephen K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289109/ https://www.ncbi.nlm.nih.gov/pubmed/30532050 http://dx.doi.org/10.1038/sdata.2018.293 |
Ejemplares similares
-
Analysis of impact metrics for the Protein Data Bank
por: Markosian, Christopher, et al.
Publicado: (2018) -
Rank regression: an alternative regression approach for data with outliers
por: CHEN, Tian, et al.
Publicado: (2014) -
Remediation of the protein data bank archive
por: Henrick, Kim, et al.
Publicado: (2008) -
Probability models and statistical analyses for ranking data
por: Fligner, Michael, et al.
Publicado: (1993) -
RCSB Protein Data Bank: improved annotation, search and visualization of membrane protein structures archived in the PDB
por: Bittrich, Sebastian, et al.
Publicado: (2021)