Cargando…
GIFT: Guided and Interpretable Factorization for Tensors with an application to large-scale multi-platform cancer analysis
MOTIVATION: Given multi-platform genome data with prior knowledge of functional gene sets, how can we extract interpretable latent relationships between patients and genes? More specifically, how can we devise a tensor factorization method which produces an interpretable gene factor matrix based on...
Autores principales: | Lee, Jungwoo, Oh, Sejoon, Sael, Lee |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289137/ https://www.ncbi.nlm.nih.gov/pubmed/29931238 http://dx.doi.org/10.1093/bioinformatics/bty490 |
Ejemplares similares
-
CTD: Fast, accurate, and interpretable method for static and dynamic tensor decompositions
por: Lee, Jungwoo, et al.
Publicado: (2018) -
CERN Holiday Gift Guide
Publicado: (2013) -
Gifts and Gifts
por: Pratt, Ben. H.
Publicado: (1873) -
PU-MFA: Point Cloud Up-Sampling via Multi-Scale Features Attention
por: Lee, Hyungjun, et al.
Publicado: (2022) -
Tensor networks for dimensionality reduction and large-scale optimization: part 2 applications and future perspectives
por: Cichocki, Andrzej, et al.
Publicado: (2017)