Cargando…
Realization of high-power-efficiency white electroluminescence from a single polymer by energy-level engineering
Single white light-emitting polymers (SWPs) represent a high-fidelity system for generating white light emission from polymers without phase separation compared to polymer blend systems. However, their device performance so far has been limited because of the unwanted hole scattering caused by an en...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Royal Society of Chemistry
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289170/ https://www.ncbi.nlm.nih.gov/pubmed/30627389 http://dx.doi.org/10.1039/c8sc03753a |
_version_ | 1783379936740900864 |
---|---|
author | Shao, Shiyang Wang, Shumeng Xu, Xiushang Yang, Yun Lv, Jianhong Ding, Junqiao Wang, Lixiang Jing, Xiabin Wang, Fosong |
author_facet | Shao, Shiyang Wang, Shumeng Xu, Xiushang Yang, Yun Lv, Jianhong Ding, Junqiao Wang, Lixiang Jing, Xiabin Wang, Fosong |
author_sort | Shao, Shiyang |
collection | PubMed |
description | Single white light-emitting polymers (SWPs) represent a high-fidelity system for generating white light emission from polymers without phase separation compared to polymer blend systems. However, their device performance so far has been limited because of the unwanted hole scattering caused by an energy-level mismatch between emitters and hosts, and the large injection barrier at the polymer/anode interface. Here, we report novel poly(arylene phosphine oxide)-based all-phosphorescent SWPs by using the combination of a high-HOMO-level blue phosphor and high-HOMO-level poly(arylene phosphine oxide) host to achieve a low turn-on voltage of 2.8 V, high external quantum efficiency of 18.0% and remarkable power efficiency of 52.1 lm W(–1), which makes them the most efficient SWPs so far. This record power efficiency is realized by using the high-HOMO-level blue phosphor to eliminate the hole scattering effect and by using the high-HOMO-level polymer host to reduce the hole injection barrier. This result represents an important progress in SWPs to achieve efficiency surpassing that of the polymer blends currently used for solution-processed white organic light-emitting diodes (WOLEDs) and even comparable with that of the small molecules used for vacuum-deposited WOLEDs. |
format | Online Article Text |
id | pubmed-6289170 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-62891702019-01-09 Realization of high-power-efficiency white electroluminescence from a single polymer by energy-level engineering Shao, Shiyang Wang, Shumeng Xu, Xiushang Yang, Yun Lv, Jianhong Ding, Junqiao Wang, Lixiang Jing, Xiabin Wang, Fosong Chem Sci Chemistry Single white light-emitting polymers (SWPs) represent a high-fidelity system for generating white light emission from polymers without phase separation compared to polymer blend systems. However, their device performance so far has been limited because of the unwanted hole scattering caused by an energy-level mismatch between emitters and hosts, and the large injection barrier at the polymer/anode interface. Here, we report novel poly(arylene phosphine oxide)-based all-phosphorescent SWPs by using the combination of a high-HOMO-level blue phosphor and high-HOMO-level poly(arylene phosphine oxide) host to achieve a low turn-on voltage of 2.8 V, high external quantum efficiency of 18.0% and remarkable power efficiency of 52.1 lm W(–1), which makes them the most efficient SWPs so far. This record power efficiency is realized by using the high-HOMO-level blue phosphor to eliminate the hole scattering effect and by using the high-HOMO-level polymer host to reduce the hole injection barrier. This result represents an important progress in SWPs to achieve efficiency surpassing that of the polymer blends currently used for solution-processed white organic light-emitting diodes (WOLEDs) and even comparable with that of the small molecules used for vacuum-deposited WOLEDs. Royal Society of Chemistry 2018-09-19 /pmc/articles/PMC6289170/ /pubmed/30627389 http://dx.doi.org/10.1039/c8sc03753a Text en This journal is © The Royal Society of Chemistry 2018 http://creativecommons.org/licenses/by-nc/3.0/ This article is freely available. This article is licensed under a Creative Commons Attribution Non Commercial 3.0 Unported Licence (CC BY-NC 3.0) |
spellingShingle | Chemistry Shao, Shiyang Wang, Shumeng Xu, Xiushang Yang, Yun Lv, Jianhong Ding, Junqiao Wang, Lixiang Jing, Xiabin Wang, Fosong Realization of high-power-efficiency white electroluminescence from a single polymer by energy-level engineering |
title | Realization of high-power-efficiency white electroluminescence from a single polymer by energy-level engineering
|
title_full | Realization of high-power-efficiency white electroluminescence from a single polymer by energy-level engineering
|
title_fullStr | Realization of high-power-efficiency white electroluminescence from a single polymer by energy-level engineering
|
title_full_unstemmed | Realization of high-power-efficiency white electroluminescence from a single polymer by energy-level engineering
|
title_short | Realization of high-power-efficiency white electroluminescence from a single polymer by energy-level engineering
|
title_sort | realization of high-power-efficiency white electroluminescence from a single polymer by energy-level engineering |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289170/ https://www.ncbi.nlm.nih.gov/pubmed/30627389 http://dx.doi.org/10.1039/c8sc03753a |
work_keys_str_mv | AT shaoshiyang realizationofhighpowerefficiencywhiteelectroluminescencefromasinglepolymerbyenergylevelengineering AT wangshumeng realizationofhighpowerefficiencywhiteelectroluminescencefromasinglepolymerbyenergylevelengineering AT xuxiushang realizationofhighpowerefficiencywhiteelectroluminescencefromasinglepolymerbyenergylevelengineering AT yangyun realizationofhighpowerefficiencywhiteelectroluminescencefromasinglepolymerbyenergylevelengineering AT lvjianhong realizationofhighpowerefficiencywhiteelectroluminescencefromasinglepolymerbyenergylevelengineering AT dingjunqiao realizationofhighpowerefficiencywhiteelectroluminescencefromasinglepolymerbyenergylevelengineering AT wanglixiang realizationofhighpowerefficiencywhiteelectroluminescencefromasinglepolymerbyenergylevelengineering AT jingxiabin realizationofhighpowerefficiencywhiteelectroluminescencefromasinglepolymerbyenergylevelengineering AT wangfosong realizationofhighpowerefficiencywhiteelectroluminescencefromasinglepolymerbyenergylevelengineering |