Cargando…
Validation of epigenetic mechanisms regulating gene expression in canine B-cell lymphoma: An in vitro and in vivo approach
Despite canine B-cell Lymphoma (BCL) representing the most common haematological tumour, epigenetic events driving development and progression are scarcely known. Recently, canine Diffuse Large BCL (DLBCL) DNA methylome by genome-wide CpG microarray has identified genes and pathways associated to pa...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289462/ https://www.ncbi.nlm.nih.gov/pubmed/30533020 http://dx.doi.org/10.1371/journal.pone.0208709 |
_version_ | 1783379964135997440 |
---|---|
author | Da Ros, Silvia Aresu, Luca Ferraresso, Serena Zorzan, Eleonora Gaudio, Eugenio Bertoni, Francesco Dacasto, Mauro Giantin, Mery |
author_facet | Da Ros, Silvia Aresu, Luca Ferraresso, Serena Zorzan, Eleonora Gaudio, Eugenio Bertoni, Francesco Dacasto, Mauro Giantin, Mery |
author_sort | Da Ros, Silvia |
collection | PubMed |
description | Despite canine B-cell Lymphoma (BCL) representing the most common haematological tumour, epigenetic events driving development and progression are scarcely known. Recently, canine Diffuse Large BCL (DLBCL) DNA methylome by genome-wide CpG microarray has identified genes and pathways associated to pathogenesis. To validate data previously obtained by array analysis, the CLBL-1 cell line was used and the HOXD10, FGFR2, ITIH5 and RASAL3 genes were selected. CLBL-1 cells were treated with two hypomethylating drugs (HDs; IC(50,) 50% inhibitory concentration), i.e. azacytidine and decitabine (DEC), either alone or in combination with three histone deacetylase inhibitors (HDACis; IC(20)), i.e. valproic acid, trichostatin and vorinostat. Following the incubation with both HDs, an overall decrease of promoter methylation was highlighted, thus confirming target genes hypermethylation. The highest mRNA restoration was observed following the exposure to HDs combined with HDACis, and mostly with valproic acid. Contrasting results were only obtained for RASAL3. An in vivo confirmation was finally attempted treating Nod-Scid mice engrafted with CLBL-1 cells with DEC. Although DEC did not arrest tumour growth, target genes promoter methylation was significantly reduced in DEC-treated mice vs controls. Overall, this work demonstrates that CLBL-1 cell line represents a reliable in vitro model to validate the methylation-dependent silencing of key genes for BCL; moreover, it may be useful for xenograft models in mice, despite its aggressive behaviour. In future, functional studies will be performed to deepen the role of selected genes on BCL pathogenesis and progression, and their methylation-dependent mechanism of regulation. |
format | Online Article Text |
id | pubmed-6289462 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-62894622018-12-28 Validation of epigenetic mechanisms regulating gene expression in canine B-cell lymphoma: An in vitro and in vivo approach Da Ros, Silvia Aresu, Luca Ferraresso, Serena Zorzan, Eleonora Gaudio, Eugenio Bertoni, Francesco Dacasto, Mauro Giantin, Mery PLoS One Research Article Despite canine B-cell Lymphoma (BCL) representing the most common haematological tumour, epigenetic events driving development and progression are scarcely known. Recently, canine Diffuse Large BCL (DLBCL) DNA methylome by genome-wide CpG microarray has identified genes and pathways associated to pathogenesis. To validate data previously obtained by array analysis, the CLBL-1 cell line was used and the HOXD10, FGFR2, ITIH5 and RASAL3 genes were selected. CLBL-1 cells were treated with two hypomethylating drugs (HDs; IC(50,) 50% inhibitory concentration), i.e. azacytidine and decitabine (DEC), either alone or in combination with three histone deacetylase inhibitors (HDACis; IC(20)), i.e. valproic acid, trichostatin and vorinostat. Following the incubation with both HDs, an overall decrease of promoter methylation was highlighted, thus confirming target genes hypermethylation. The highest mRNA restoration was observed following the exposure to HDs combined with HDACis, and mostly with valproic acid. Contrasting results were only obtained for RASAL3. An in vivo confirmation was finally attempted treating Nod-Scid mice engrafted with CLBL-1 cells with DEC. Although DEC did not arrest tumour growth, target genes promoter methylation was significantly reduced in DEC-treated mice vs controls. Overall, this work demonstrates that CLBL-1 cell line represents a reliable in vitro model to validate the methylation-dependent silencing of key genes for BCL; moreover, it may be useful for xenograft models in mice, despite its aggressive behaviour. In future, functional studies will be performed to deepen the role of selected genes on BCL pathogenesis and progression, and their methylation-dependent mechanism of regulation. Public Library of Science 2018-12-11 /pmc/articles/PMC6289462/ /pubmed/30533020 http://dx.doi.org/10.1371/journal.pone.0208709 Text en © 2018 Da Ros et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Da Ros, Silvia Aresu, Luca Ferraresso, Serena Zorzan, Eleonora Gaudio, Eugenio Bertoni, Francesco Dacasto, Mauro Giantin, Mery Validation of epigenetic mechanisms regulating gene expression in canine B-cell lymphoma: An in vitro and in vivo approach |
title | Validation of epigenetic mechanisms regulating gene expression in canine B-cell lymphoma: An in vitro and in vivo approach |
title_full | Validation of epigenetic mechanisms regulating gene expression in canine B-cell lymphoma: An in vitro and in vivo approach |
title_fullStr | Validation of epigenetic mechanisms regulating gene expression in canine B-cell lymphoma: An in vitro and in vivo approach |
title_full_unstemmed | Validation of epigenetic mechanisms regulating gene expression in canine B-cell lymphoma: An in vitro and in vivo approach |
title_short | Validation of epigenetic mechanisms regulating gene expression in canine B-cell lymphoma: An in vitro and in vivo approach |
title_sort | validation of epigenetic mechanisms regulating gene expression in canine b-cell lymphoma: an in vitro and in vivo approach |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289462/ https://www.ncbi.nlm.nih.gov/pubmed/30533020 http://dx.doi.org/10.1371/journal.pone.0208709 |
work_keys_str_mv | AT darossilvia validationofepigeneticmechanismsregulatinggeneexpressionincaninebcelllymphomaaninvitroandinvivoapproach AT aresuluca validationofepigeneticmechanismsregulatinggeneexpressionincaninebcelllymphomaaninvitroandinvivoapproach AT ferraressoserena validationofepigeneticmechanismsregulatinggeneexpressionincaninebcelllymphomaaninvitroandinvivoapproach AT zorzaneleonora validationofepigeneticmechanismsregulatinggeneexpressionincaninebcelllymphomaaninvitroandinvivoapproach AT gaudioeugenio validationofepigeneticmechanismsregulatinggeneexpressionincaninebcelllymphomaaninvitroandinvivoapproach AT bertonifrancesco validationofepigeneticmechanismsregulatinggeneexpressionincaninebcelllymphomaaninvitroandinvivoapproach AT dacastomauro validationofepigeneticmechanismsregulatinggeneexpressionincaninebcelllymphomaaninvitroandinvivoapproach AT giantinmery validationofepigeneticmechanismsregulatinggeneexpressionincaninebcelllymphomaaninvitroandinvivoapproach |