Cargando…
Amplified Detection of Chemical Warfare Agents Using Two-Dimensional Chemical Potential Gradients
[Image: see text] Chemical warfare agents such as sarin are highly toxic, and detection of even trace levels is important. Using a hydrogel film containing a built-in two-dimensional chemical potential gradient, we demonstrate the detection of a sarin simulant under conditions potentially as low as...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289487/ https://www.ncbi.nlm.nih.gov/pubmed/30555985 http://dx.doi.org/10.1021/acsomega.8b01519 |
Sumario: | [Image: see text] Chemical warfare agents such as sarin are highly toxic, and detection of even trace levels is important. Using a hydrogel film containing a built-in two-dimensional chemical potential gradient, we demonstrate the detection of a sarin simulant under conditions potentially as low as a level 1 (6.90 × 10(–9) mg/cm(3) for 10 min) Acute Exposure Guideline Level sarin exposure. Specifically, the sarin simulant diisopropyl fluorophosphate (DFP) is aerosol-deposited on a hydrogel film containing a built-in ionic chemical gradient and the enzyme, diisopropyl fluorophosphatase (DFPase). DFPase degrades the DFP, releasing fluoride ions. The fluoride ions are then concentrated by the gradient to a miniature electrochemical sensor embedded in the hydrogel providing a 30-fold amplification of the fluoride ion signal, which is an indication of exposure to DFP, relative to a gradient-free system. This method is general for agents which hydrolyze into chemically detectable ionic species. |
---|