Cargando…
Quantitative Interrelation between Atractylenolide I, II, and III in Atractylodes japonica Koidzumi Rhizomes, and Evaluation of Their Oxidative Transformation Using a Biomimetic Kinetic Model
[Image: see text] Analytical methods based on ultraperformance liquid chromatography/ion-trap mass spectrometry (UPLC/ion-trap MS) were developed for quantification of atractylenolide I, II, and III in the methanol extract of Atractylodes japonica rhizomes with a C(18) column in an acidified water/a...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2018
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289488/ https://www.ncbi.nlm.nih.gov/pubmed/30555992 http://dx.doi.org/10.1021/acsomega.8b02005 |
_version_ | 1783379969803550720 |
---|---|
author | Kim, Jung-Hoon Lee, Yuvin Lee, Guemsan Doh, Eui-Jeong Hong, Seungwoo |
author_facet | Kim, Jung-Hoon Lee, Yuvin Lee, Guemsan Doh, Eui-Jeong Hong, Seungwoo |
author_sort | Kim, Jung-Hoon |
collection | PubMed |
description | [Image: see text] Analytical methods based on ultraperformance liquid chromatography/ion-trap mass spectrometry (UPLC/ion-trap MS) were developed for quantification of atractylenolide I, II, and III in the methanol extract of Atractylodes japonica rhizomes with a C(18) column in an acidified water/acetonitrile gradient eluent in an LC system, and ion-trap MS coupled with electrospray ionization was employed under positive-ion mode. The three atractylenolides were quantified in all A. japonica samples, and the content of atractylenolide I, II, and III showed a significant correlation to each other. Such high correlation was explained by the mechanistic insights into the biosynthetic pathway of atractylenoide III and I from atractylenoide II by using the biomimetic cytochrome P450 model, [Fe(tmp)](CF(3)SO(3)) (tmp = meso-tetramesitylporphyrin). Atractylenolides could be transformed by oxidation via the oxidative enzyme in the A. japonica plant. The present study first reports the first oxidative transformation of atractylenolides using the heme iron model complex. |
format | Online Article Text |
id | pubmed-6289488 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-62894882018-12-12 Quantitative Interrelation between Atractylenolide I, II, and III in Atractylodes japonica Koidzumi Rhizomes, and Evaluation of Their Oxidative Transformation Using a Biomimetic Kinetic Model Kim, Jung-Hoon Lee, Yuvin Lee, Guemsan Doh, Eui-Jeong Hong, Seungwoo ACS Omega [Image: see text] Analytical methods based on ultraperformance liquid chromatography/ion-trap mass spectrometry (UPLC/ion-trap MS) were developed for quantification of atractylenolide I, II, and III in the methanol extract of Atractylodes japonica rhizomes with a C(18) column in an acidified water/acetonitrile gradient eluent in an LC system, and ion-trap MS coupled with electrospray ionization was employed under positive-ion mode. The three atractylenolides were quantified in all A. japonica samples, and the content of atractylenolide I, II, and III showed a significant correlation to each other. Such high correlation was explained by the mechanistic insights into the biosynthetic pathway of atractylenoide III and I from atractylenoide II by using the biomimetic cytochrome P450 model, [Fe(tmp)](CF(3)SO(3)) (tmp = meso-tetramesitylporphyrin). Atractylenolides could be transformed by oxidation via the oxidative enzyme in the A. japonica plant. The present study first reports the first oxidative transformation of atractylenolides using the heme iron model complex. American Chemical Society 2018-11-05 /pmc/articles/PMC6289488/ /pubmed/30555992 http://dx.doi.org/10.1021/acsomega.8b02005 Text en Copyright © 2018 American Chemical Society This is an open access article published under an ACS AuthorChoice License (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) , which permits copying and redistribution of the article or any adaptations for non-commercial purposes. |
spellingShingle | Kim, Jung-Hoon Lee, Yuvin Lee, Guemsan Doh, Eui-Jeong Hong, Seungwoo Quantitative Interrelation between Atractylenolide I, II, and III in Atractylodes japonica Koidzumi Rhizomes, and Evaluation of Their Oxidative Transformation Using a Biomimetic Kinetic Model |
title | Quantitative Interrelation between
Atractylenolide I, II, and III in Atractylodes japonica Koidzumi Rhizomes, and Evaluation of Their Oxidative Transformation
Using a Biomimetic Kinetic Model |
title_full | Quantitative Interrelation between
Atractylenolide I, II, and III in Atractylodes japonica Koidzumi Rhizomes, and Evaluation of Their Oxidative Transformation
Using a Biomimetic Kinetic Model |
title_fullStr | Quantitative Interrelation between
Atractylenolide I, II, and III in Atractylodes japonica Koidzumi Rhizomes, and Evaluation of Their Oxidative Transformation
Using a Biomimetic Kinetic Model |
title_full_unstemmed | Quantitative Interrelation between
Atractylenolide I, II, and III in Atractylodes japonica Koidzumi Rhizomes, and Evaluation of Their Oxidative Transformation
Using a Biomimetic Kinetic Model |
title_short | Quantitative Interrelation between
Atractylenolide I, II, and III in Atractylodes japonica Koidzumi Rhizomes, and Evaluation of Their Oxidative Transformation
Using a Biomimetic Kinetic Model |
title_sort | quantitative interrelation between
atractylenolide i, ii, and iii in atractylodes japonica koidzumi rhizomes, and evaluation of their oxidative transformation
using a biomimetic kinetic model |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289488/ https://www.ncbi.nlm.nih.gov/pubmed/30555992 http://dx.doi.org/10.1021/acsomega.8b02005 |
work_keys_str_mv | AT kimjunghoon quantitativeinterrelationbetweenatractylenolideiiiandiiiinatractylodesjaponicakoidzumirhizomesandevaluationoftheiroxidativetransformationusingabiomimetickineticmodel AT leeyuvin quantitativeinterrelationbetweenatractylenolideiiiandiiiinatractylodesjaponicakoidzumirhizomesandevaluationoftheiroxidativetransformationusingabiomimetickineticmodel AT leeguemsan quantitativeinterrelationbetweenatractylenolideiiiandiiiinatractylodesjaponicakoidzumirhizomesandevaluationoftheiroxidativetransformationusingabiomimetickineticmodel AT doheuijeong quantitativeinterrelationbetweenatractylenolideiiiandiiiinatractylodesjaponicakoidzumirhizomesandevaluationoftheiroxidativetransformationusingabiomimetickineticmodel AT hongseungwoo quantitativeinterrelationbetweenatractylenolideiiiandiiiinatractylodesjaponicakoidzumirhizomesandevaluationoftheiroxidativetransformationusingabiomimetickineticmodel |