Cargando…
Expert-level sleep scoring with deep neural networks
OBJECTIVES: Scoring laboratory polysomnography (PSG) data remains a manual task of visually annotating 3 primary categories: sleep stages, sleep disordered breathing, and limb movements. Attempts to automate this process have been hampered by the complexity of PSG signals and physiological heterogen...
Autores principales: | Biswal, Siddharth, Sun, Haoqi, Goparaju, Balaji, Westover, M Brandon, Sun, Jimeng, Bianchi, Matt T |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289549/ https://www.ncbi.nlm.nih.gov/pubmed/30445569 http://dx.doi.org/10.1093/jamia/ocy131 |
Ejemplares similares
-
Exploiting labels from multiple experts in automated sleep scoring
por: Nasiri, Samaneh, et al.
Publicado: (2023) -
Big data in sleep medicine: prospects and pitfalls in phenotyping
por: Bianchi, Matt T, et al.
Publicado: (2017) -
Using recurrent neural network models for early detection of heart failure onset
por: Choi, Edward, et al.
Publicado: (2017) -
Alternative remedies for insomnia: a proposed method for personalized therapeutic trials
por: Romero, Kate, et al.
Publicado: (2017) -
FLANNEL (Focal Loss bAsed Neural Network EnsembLe) for COVID-19 detection
por: Qiao, Zhi, et al.
Publicado: (2020)