Cargando…
Fast adaptation of tropical diatoms to increased warming with trade-offs
Ocean warming with climate change is forcing marine organisms to shift their distributions polewards and phenology. In warm tropical seas, evolutionary adaptation by local species to warming will be crucial to avoid predicted desertification and reduction in diversity. However, little is known about...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289974/ https://www.ncbi.nlm.nih.gov/pubmed/30538260 http://dx.doi.org/10.1038/s41598-018-36091-y |
_version_ | 1783380003071721472 |
---|---|
author | Jin, Peng Agustí, Susana |
author_facet | Jin, Peng Agustí, Susana |
author_sort | Jin, Peng |
collection | PubMed |
description | Ocean warming with climate change is forcing marine organisms to shift their distributions polewards and phenology. In warm tropical seas, evolutionary adaptation by local species to warming will be crucial to avoid predicted desertification and reduction in diversity. However, little is known about the adaptation of phytoplankton in warm seas. Across the ocean, diatomic microalgae are the main primary producers in cold waters; they also contribute to tropical communities where they play a necessary role in the biological pump. Here we show that four species of diatoms isolated from the tropical Red Sea adapted to warming conditions (30 °C) after 200–600 generations by using various thermal strategies. Two of the warming adapted species increased their optimal growth temperature (T(opt)) and maximum growth rate. The other two diatoms did not increase T(opt) and growth, but shifted from specialist to generalist increasing their maximum critical thermal limit. Our data show that tropical diatoms can adapt to warming, although trade offs on photosynthetic efficiency, high irradiance stress, and lower growth rate could alter their competitive fitness. Our findings suggest that adaptive responses to warming among phytoplankton could help to arrest the sharp decline in diversity resulting from climate change that is predicted for tropical waters. |
format | Online Article Text |
id | pubmed-6289974 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-62899742018-12-19 Fast adaptation of tropical diatoms to increased warming with trade-offs Jin, Peng Agustí, Susana Sci Rep Article Ocean warming with climate change is forcing marine organisms to shift their distributions polewards and phenology. In warm tropical seas, evolutionary adaptation by local species to warming will be crucial to avoid predicted desertification and reduction in diversity. However, little is known about the adaptation of phytoplankton in warm seas. Across the ocean, diatomic microalgae are the main primary producers in cold waters; they also contribute to tropical communities where they play a necessary role in the biological pump. Here we show that four species of diatoms isolated from the tropical Red Sea adapted to warming conditions (30 °C) after 200–600 generations by using various thermal strategies. Two of the warming adapted species increased their optimal growth temperature (T(opt)) and maximum growth rate. The other two diatoms did not increase T(opt) and growth, but shifted from specialist to generalist increasing their maximum critical thermal limit. Our data show that tropical diatoms can adapt to warming, although trade offs on photosynthetic efficiency, high irradiance stress, and lower growth rate could alter their competitive fitness. Our findings suggest that adaptive responses to warming among phytoplankton could help to arrest the sharp decline in diversity resulting from climate change that is predicted for tropical waters. Nature Publishing Group UK 2018-12-11 /pmc/articles/PMC6289974/ /pubmed/30538260 http://dx.doi.org/10.1038/s41598-018-36091-y Text en © The Author(s) 2018 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Jin, Peng Agustí, Susana Fast adaptation of tropical diatoms to increased warming with trade-offs |
title | Fast adaptation of tropical diatoms to increased warming with trade-offs |
title_full | Fast adaptation of tropical diatoms to increased warming with trade-offs |
title_fullStr | Fast adaptation of tropical diatoms to increased warming with trade-offs |
title_full_unstemmed | Fast adaptation of tropical diatoms to increased warming with trade-offs |
title_short | Fast adaptation of tropical diatoms to increased warming with trade-offs |
title_sort | fast adaptation of tropical diatoms to increased warming with trade-offs |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6289974/ https://www.ncbi.nlm.nih.gov/pubmed/30538260 http://dx.doi.org/10.1038/s41598-018-36091-y |
work_keys_str_mv | AT jinpeng fastadaptationoftropicaldiatomstoincreasedwarmingwithtradeoffs AT agustisusana fastadaptationoftropicaldiatomstoincreasedwarmingwithtradeoffs |