Cargando…
A Comparative Study on the Performance of GSCA and CSA in Parameter Recovery for Structural Equation Models With Ordinal Observed Variables
A simulation based comparative study was designed to compare two alternative approaches to structural equation modeling—generalized structured component analysis (GSCA) with the alternating least squares (ALS) estimator vs. covariance structure analysis (CSA) with the maximum likelihood (ML) estimat...
Autores principales: | Jung, Kwanghee, Panko, Pavel, Lee, Jaehoon, Hwang, Heungsun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290040/ https://www.ncbi.nlm.nih.gov/pubmed/30568625 http://dx.doi.org/10.3389/fpsyg.2018.02461 |
Ejemplares similares
-
Comparison of Bootstrap Confidence Interval Methods for GSCA Using a Monte Carlo Simulation
por: Jung, Kwanghee, et al.
Publicado: (2019) -
Generalized Structured Component Analysis with Uniqueness Terms for Accommodating Measurement Error
por: Hwang, Heungsun, et al.
Publicado: (2017) -
MetaGSCA: A tool for meta-analysis of gene set differential coexpression
por: Guo, Yan, et al.
Publicado: (2021) -
Comparing interval estimates for small sample ordinal CFA models
por: Natesan, Prathiba
Publicado: (2015) -
The Importance of Isomorphism for Conclusions about Homology: A Bayesian Multilevel Structural Equation Modeling Approach with Ordinal Indicators
por: Guenole, Nigel
Publicado: (2016)