Cargando…
Leveraging auxiliary measures: a deep multi-task neural network for predictive modeling in clinical research
BACKGROUND: Accurate predictive modeling in clinical research enables effective early intervention that patients are most likely to benefit from. However, due to the complex biological nature of disease progression, capturing the highly non-linear information from low-level input features is quite c...
Autores principales: | Li, Xiangrui, Zhu, Dongxiao, Levy, Phillip |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290511/ https://www.ncbi.nlm.nih.gov/pubmed/30537954 http://dx.doi.org/10.1186/s12911-018-0676-9 |
Ejemplares similares
-
Predicting human protein function with multi-task deep neural networks
por: Fa, Rui, et al.
Publicado: (2018) -
Leveraging Neural Networks in Preclinical Alcohol Research
por: Smith, Lauren C., et al.
Publicado: (2020) -
ADMET property prediction via multi-task graph learning under adaptive auxiliary task selection
por: Du, Bing-Xue, et al.
Publicado: (2023) -
Skin Lesion Segmentation Using Deep Learning with Auxiliary Task
por: Liu, Lina, et al.
Publicado: (2021) -
DEEPred: Automated Protein Function Prediction with Multi-task Feed-forward Deep Neural Networks
por: Sureyya Rifaioglu, Ahmet, et al.
Publicado: (2019)