Cargando…
EHR phenotyping via jointly embedding medical concepts and words into a unified vector space
BACKGROUND: There has been an increasing interest in learning low-dimensional vector representations of medical concepts from Electronic Health Records (EHRs). Vector representations of medical concepts facilitate exploratory analysis and predictive modeling of EHR data to gain insights about the pa...
Autores principales: | Bai, Tian, Chanda, Ashis Kumar, Egleston, Brian L., Vucetic, Slobodan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290514/ https://www.ncbi.nlm.nih.gov/pubmed/30537974 http://dx.doi.org/10.1186/s12911-018-0672-0 |
Ejemplares similares
-
Improving medical term embeddings using UMLS Metathesaurus
por: Chanda, Ashis Kumar, et al.
Publicado: (2022) -
Using Pointwise Mutual Information for Breast Cancer Health Disparities Research With SEER-Medicare Claims
por: Egleston, Brian L., et al.
Publicado: (2023) -
Joint embedding VQA model based on dynamic word vector
por: Ma, Zhiyang, et al.
Publicado: (2021) -
Use of word and graph embedding to measure semantic relatedness between Unified Medical Language System concepts
por: Mao, Yuqing, et al.
Publicado: (2020) -
Benefits versus drawbacks of delaying surgery due to additional consultations in older patients with breast cancer
por: Egleston, Brian L., et al.
Publicado: (2023)