Cargando…
A Redox Conjugated Polymer-Based All-Solid-State Reference Electrode
This work reports the design, synthesis, and characterization of a novel redox-active conjugated polyaniline containing quinone moiety as a solid state reference electrode. The union of electro-active quinone with π-conjugated polyaniline was created by the first chemical synthesis of para-dimethoxy...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290589/ https://www.ncbi.nlm.nih.gov/pubmed/30961116 http://dx.doi.org/10.3390/polym10111191 |
Sumario: | This work reports the design, synthesis, and characterization of a novel redox-active conjugated polyaniline containing quinone moiety as a solid state reference electrode. The union of electro-active quinone with π-conjugated polyaniline was created by the first chemical synthesis of para-dimethoxybenzene-functionalized aniline as a monomer using a palladium-mediated coupling. The successful polymerization of the as-prepared monomer was accomplished without acid additives. Its post-polymerization modification with strong Lewis acid boron tribromide furnished unique poly (aniline quinone/hydroquinone) with desired properties for all-solid-state reference electrode (RE) applications. The electrochemical responses from the conjugated polyaniline backbone in this unique polymer have been “suppressed” by the quinone pendant. The resulting poly (aniline quinone) showed a quasi-reversible redox process from the redox behavior of the pendant quinone. The stable electrode potential of this poly (aniline quinone/hydroquinone) suggested that it was a single phase in which the amounts of totally reduced and totally oxidized species could be maintained at a constant in various solvents and electrolytes. Its electrochemical stability was excellent with 95% peak current retention after continuous cyclic voltammetric testing. The aniline and quinone moieties in poly (aniline quinone/hydroquinone) render it to have both hydrophilic and hydrophobic compatibility. It showed excellent behavior as a reference electrode in aqueous and non-aqueous media and can be used in both non-zero current and zero-current conditions, providing a stable potential with a maximum potential drift of ~4.7 mV over ten consecutive days. |
---|