Cargando…

Creation of Superhydrophobic Poly(L-phenylalanine) Nonwovens by Electrospinning

From the viewpoint of green chemistry and environmental chemistry, an important challenge in the field of superhydrophobic materials is to create them with only bio-based molecules. We developed superhydrophobic and chemically stable poly(L-phenylalanine) (PolyPhe) nonwovens by electrospinning. Poly...

Descripción completa

Detalles Bibliográficos
Autores principales: Yoshida, Hiroaki, Yanagisawa, Kazuhiro
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290602/
https://www.ncbi.nlm.nih.gov/pubmed/30961137
http://dx.doi.org/10.3390/polym10111212
Descripción
Sumario:From the viewpoint of green chemistry and environmental chemistry, an important challenge in the field of superhydrophobic materials is to create them with only bio-based molecules. We developed superhydrophobic and chemically stable poly(L-phenylalanine) (PolyPhe) nonwovens by electrospinning. PolyPhe was selected because, due to its very rigid chemical structure, it is one of the toughest and most hydrophobic polymers among polymers composed only of amino acids. The water contact angle on the nonwovens is a maximum of 160°, and the droplets are stably adhered and remain still on the nonwoven surface even if it is turned over, thereby suggesting a petal-type superhydrophobicity. The nonwovens show a good chemical stability, and their weight remains unchanged after 5 days immersion in acidic (pH 2) and basic (pH 12) conditions. In addition, the superhydrophobic property is not lost even after the alkali treatment. Such tough superhydrophobic materials are intriguing for further biomedical and environmental applications.