Cargando…
Preparation and Characterization of Low-Molecular-Weight Natural Rubber Latex via Photodegradation Catalyzed by Nano TiO(2)
Natural rubber is one of the most important renewable biopolymers used in many applications due to its special properties that cannot be easily mimicked by synthetic polymers. To sustain the existence of natural rubber in industries, modifications have been made to its chemical structure from time t...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290632/ https://www.ncbi.nlm.nih.gov/pubmed/30961141 http://dx.doi.org/10.3390/polym10111216 |
_version_ | 1783380126582439936 |
---|---|
author | Ibrahim, Suhawati Othman, Nadras Sreekantan, Srimala Tan, Kim Song Mohd Nor, Zairossani Ismail, Hanafi |
author_facet | Ibrahim, Suhawati Othman, Nadras Sreekantan, Srimala Tan, Kim Song Mohd Nor, Zairossani Ismail, Hanafi |
author_sort | Ibrahim, Suhawati |
collection | PubMed |
description | Natural rubber is one of the most important renewable biopolymers used in many applications due to its special properties that cannot be easily mimicked by synthetic polymers. To sustain the existence of natural rubber in industries, modifications have been made to its chemical structure from time to time in order to obtain new properties and to enable it to be employed in new applications. The chemical structure of natural rubber can be modified by exposure to ultraviolet light to reduce its molecular weight. Under controlled conditions, the natural rubber chains will be broken by photodegradation to yield low-molecular-weight natural rubber. The aim of this work was to obtain what is known as liquid natural rubber via photodegradation, with titanium dioxide nanocrystals as the catalyst. Titanium dioxide, which was firstly synthesized using the sol–gel method, was confirmed to be in the form of an anatase, with a size of about 10 nm. In this work, the photodegradation was carried out in latex state and yielded low-molecular-weight natural rubber latex of less than 10,000 g/mol. The presence of hydroxyl and carbonyl groups on the liquid natural rubber (LNR) chains was observed, resulting from the breaking of the chains. Scanning electron microscopy of the NR latex particles showed that titanium dioxide nanocrystals were embedded on the latex surface, but then detached during the degradation reaction. |
format | Online Article Text |
id | pubmed-6290632 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2018 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-62906322019-04-02 Preparation and Characterization of Low-Molecular-Weight Natural Rubber Latex via Photodegradation Catalyzed by Nano TiO(2) Ibrahim, Suhawati Othman, Nadras Sreekantan, Srimala Tan, Kim Song Mohd Nor, Zairossani Ismail, Hanafi Polymers (Basel) Article Natural rubber is one of the most important renewable biopolymers used in many applications due to its special properties that cannot be easily mimicked by synthetic polymers. To sustain the existence of natural rubber in industries, modifications have been made to its chemical structure from time to time in order to obtain new properties and to enable it to be employed in new applications. The chemical structure of natural rubber can be modified by exposure to ultraviolet light to reduce its molecular weight. Under controlled conditions, the natural rubber chains will be broken by photodegradation to yield low-molecular-weight natural rubber. The aim of this work was to obtain what is known as liquid natural rubber via photodegradation, with titanium dioxide nanocrystals as the catalyst. Titanium dioxide, which was firstly synthesized using the sol–gel method, was confirmed to be in the form of an anatase, with a size of about 10 nm. In this work, the photodegradation was carried out in latex state and yielded low-molecular-weight natural rubber latex of less than 10,000 g/mol. The presence of hydroxyl and carbonyl groups on the liquid natural rubber (LNR) chains was observed, resulting from the breaking of the chains. Scanning electron microscopy of the NR latex particles showed that titanium dioxide nanocrystals were embedded on the latex surface, but then detached during the degradation reaction. MDPI 2018-11-01 /pmc/articles/PMC6290632/ /pubmed/30961141 http://dx.doi.org/10.3390/polym10111216 Text en © 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ibrahim, Suhawati Othman, Nadras Sreekantan, Srimala Tan, Kim Song Mohd Nor, Zairossani Ismail, Hanafi Preparation and Characterization of Low-Molecular-Weight Natural Rubber Latex via Photodegradation Catalyzed by Nano TiO(2) |
title | Preparation and Characterization of Low-Molecular-Weight Natural Rubber Latex via Photodegradation Catalyzed by Nano TiO(2) |
title_full | Preparation and Characterization of Low-Molecular-Weight Natural Rubber Latex via Photodegradation Catalyzed by Nano TiO(2) |
title_fullStr | Preparation and Characterization of Low-Molecular-Weight Natural Rubber Latex via Photodegradation Catalyzed by Nano TiO(2) |
title_full_unstemmed | Preparation and Characterization of Low-Molecular-Weight Natural Rubber Latex via Photodegradation Catalyzed by Nano TiO(2) |
title_short | Preparation and Characterization of Low-Molecular-Weight Natural Rubber Latex via Photodegradation Catalyzed by Nano TiO(2) |
title_sort | preparation and characterization of low-molecular-weight natural rubber latex via photodegradation catalyzed by nano tio(2) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290632/ https://www.ncbi.nlm.nih.gov/pubmed/30961141 http://dx.doi.org/10.3390/polym10111216 |
work_keys_str_mv | AT ibrahimsuhawati preparationandcharacterizationoflowmolecularweightnaturalrubberlatexviaphotodegradationcatalyzedbynanotio2 AT othmannadras preparationandcharacterizationoflowmolecularweightnaturalrubberlatexviaphotodegradationcatalyzedbynanotio2 AT sreekantansrimala preparationandcharacterizationoflowmolecularweightnaturalrubberlatexviaphotodegradationcatalyzedbynanotio2 AT tankimsong preparationandcharacterizationoflowmolecularweightnaturalrubberlatexviaphotodegradationcatalyzedbynanotio2 AT mohdnorzairossani preparationandcharacterizationoflowmolecularweightnaturalrubberlatexviaphotodegradationcatalyzedbynanotio2 AT ismailhanafi preparationandcharacterizationoflowmolecularweightnaturalrubberlatexviaphotodegradationcatalyzedbynanotio2 |