Cargando…
High Performance Poly(vinyl alcohol)-Based Li-Ion Conducting Gel Polymer Electrolyte Films for Electric Double-Layer Capacitors
With 1-methyl-2-pyrrolidinone (NMP) as the solvent, the biodegradable gel polymer electrolyte films are prepared based on poly(vinyl alcohol) (PVA), lithium bis(trifluoromethane)sulfonimide (LiTFSI), and 1-ethyl-3 methylimidazoliumbis(trifluoromethylsulfonyl)imide (EMITFSI) by means of solution cast...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6290635/ https://www.ncbi.nlm.nih.gov/pubmed/30961104 http://dx.doi.org/10.3390/polym10111179 |
Sumario: | With 1-methyl-2-pyrrolidinone (NMP) as the solvent, the biodegradable gel polymer electrolyte films are prepared based on poly(vinyl alcohol) (PVA), lithium bis(trifluoromethane)sulfonimide (LiTFSI), and 1-ethyl-3 methylimidazoliumbis(trifluoromethylsulfonyl)imide (EMITFSI) by means of solution casting. The films are characterized to evaluate their structural and electrochemical performance. The 60PVA-40LiTFSI + 10 wt.% EMITFSI system exhibits excellent mechanical properties and a high ionic transference number (0.995), indicating primary ionic conduction in the film. In addition, because of the flexibility of polymer chain segments, its relaxation time is as low as 5.30 × 10(−7) s. Accordingly, a high ionic conductivity (3.6 × 10(−3) S cm(−1)) and a wide electrochemical stability window (~5 V) are obtained. The electric double-layer capacitor (EDLC) based on this electrolyte system shows a specific capacitance of 101 F g(−1) and an energy density of 10.3 W h kg(−1), even after 1000 charge-discharge cycles at a current density of 0.4 A g(−1) under a charging voltage of 2 V. All these excellent properties imply that the NMP-soluble 60PVA-40LiTFSI + 10 wt.% EMITFSI gel polymer electrolyte could be a promising electrolyte candidate for electrochemical device applications. |
---|