Cargando…
Live nanoscopic to mesoscopic topography reconstruction with an optical microscope for chemical and biological samples
Macroscopic properties of physical and biological processes like friction, wetting, and adhesion or cell migration are controlled by interfacial properties at the nanoscopic scale. In an attempt to bridge simultaneously investigations at different scales, we demonstrate here how optical microscopy i...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2018
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6291091/ https://www.ncbi.nlm.nih.gov/pubmed/30540777 http://dx.doi.org/10.1371/journal.pone.0207881 |
Sumario: | Macroscopic properties of physical and biological processes like friction, wetting, and adhesion or cell migration are controlled by interfacial properties at the nanoscopic scale. In an attempt to bridge simultaneously investigations at different scales, we demonstrate here how optical microscopy in Wet-Surface Ellipsometric Enhanced Contrast (Wet-SEEC) mode offers imaging and measurement of thin films at solid/liquid interfaces in the range 1–500 nm with lateral optical resolution. A live, label-free and noninvasive methodology integrated with microfluidic devices allowed here characterization of polymers and proteins patterns together with corresponding phenotypes of living cells. |
---|